Skip to main content
Log in

Characterization of balsam sulfide via pyrolysis–gas chromatography–mass spectrometry/sulfur chemiluminescence detection and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Balsam sulfide, produced by the reaction of turpentine/rosin and sulfur, has been used as one of the raw materials of liquid gold to decorate ceramics and tableware with thin gold film for more than 100 years. The characterization of balsam sulfide is still insufficient because of its compositional complexity. In this study, balsam sulfide was characterized using pyrolysis–gas chromatography (Py-GC)–mass spectrometry (MS) and Py-GC with sulfur chemiluminescence detection (SCD) as well as matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOFMS). Py-GC–MS/SCD analyses of balsam sulfide and its model samples revealed that the low molecular weight reaction products were mainly composed of compounds of one α-pinene unit reacted with 1–3 sulfur atoms. In the analysis of the high molecular weight components by MALDI-TOFMS, the products of two or three α-pinene units crosslinked by sulfur atoms were observed. It was found that dehydrogenation reaction proceeded gradually with the increase in the reaction time.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. B.J. Amin, D.K. Patwardhan, H.N. Roy, Trans. Ind. Ceram. Soc. 12, 55 (1953). https://doi.org/10.1080/0371750X.1953.10877605

    Article  Google Scholar 

  2. P.P. Budnikopp, E.A. Shilov, J. Am. Ceram. 6(9), 1000 (1923). https://doi.org/10.1111/j.1151-2916.1923.tb17775.x

    Article  Google Scholar 

  3. P.T. Bishop, Gold Bull. 35(3), 89 (2002). https://doi.org/10.1007/BF03214844

    Article  CAS  Google Scholar 

  4. A.N. Papazian, Gold Bull. 15(3), 81 (1982). https://doi.org/10.1007/BF03214611

    Article  Google Scholar 

  5. V. Deram, S. Turrell, E. Darque-Ceretti, M. Aucouturier, Thin Sold Film 515(1), 254 (2006). https://doi.org/10.1016/j.tsf.2005.12.078

    Article  CAS  Google Scholar 

  6. E. Darque-Ceretti, M. Aucouturier, Int. J. Conserv. Sci. 4, 647 (2013)

    Google Scholar 

  7. C.L. García, M. Becchi, M.F. Grenier-Loustalot, O. Païsse, R. Szymanski, Anal. Chem. 74, 3849 (2002). https://doi.org/10.1021/ac011190e

    Article  CAS  PubMed  Google Scholar 

  8. H. Behbehani, M.A. Al-Qallaf, O.M.E. El-Dusouqui, Pet. Sci. Technol. 23, 219 (2005). https://doi.org/10.1081/LFT-200028261

    Article  CAS  Google Scholar 

  9. T. Prasantongkolmol, H. Thongkorn, A. Sunipasa, H.A. Do, C. Saeung, S. Jongpatiwut, Pollut. Bull. 186, 114344 (2023). https://doi.org/10.1016/j.marpolbul.2022.114344

    Article  CAS  Google Scholar 

  10. R. Hua, J. Wang, H. Kong, J. Liu, X. Lu, G. Xu, J. Sep. Sci. 27, 691 (2004). https://doi.org/10.1002/jssc.200301631

    Article  CAS  PubMed  Google Scholar 

  11. Y. Kida, A.G. Carr, W.H. Green, Energy Fuels 28, 6589 (2014). https://doi.org/10.1021/ef5015956

    Article  CAS  Google Scholar 

  12. X. Cheng, D. Hou, Energies 14, 300 (2021). https://doi.org/10.3390/en14020300

    Article  CAS  Google Scholar 

  13. N. Ochiai, K. Sasamoto, K. MacNamara, J. Chromatogr. A 1270, 296 (2012). https://doi.org/10.1016/j.chroma.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  14. T.N.J. Fouquet, R.B. Cody, Y. Ozeki, S. Kitagawa, H. Ohtani, H. Sao, Am. Soc. Mass Spectrom. 29, 1611 (2018). https://doi.org/10.1007/s13361-018-1972-4

    Article  CAS  Google Scholar 

  15. A. Marie, F. Fournier, J.C. Tabet, Anal. Chem. 72, 5106 (2000). https://doi.org/10.1021/ac000124u

    Article  CAS  PubMed  Google Scholar 

  16. S.D. Hanton, Chem. Rev. 101, 527 (2001). https://doi.org/10.1021/cr9901081

    Article  CAS  PubMed  Google Scholar 

  17. G. Montaudo, F. Samperi, M.S. Montaudo, Prog. Polym. Sci. 31, 277 (2006). https://doi.org/10.1016/j.progpolymsci.2005.12.001

    Article  CAS  Google Scholar 

  18. T. Gruendling, S. Weidner, J. Falkenhagen, C. Barner-Kowollik, Polym. Chem. 1, 599 (2010). https://doi.org/10.1039/B9PY00347A

    Article  CAS  Google Scholar 

  19. W.L. Robert, Organic chemistry of synthetic high polymers (John Wiley & Sons Inc, Hoboken, 1967), pp.704–719

    Google Scholar 

  20. M.S. Karunarathna, C.P. Maladeniya, M.K. Lauer, A.G. Tennyson, R.C. Smith, RSC Adv. 13, 3234 (2023). https://doi.org/10.1039/D2RA07082K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Kitagawa.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 186 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeno, Y., Ohtani, H., Kitagawa, S. et al. Characterization of balsam sulfide via pyrolysis–gas chromatography–mass spectrometry/sulfur chemiluminescence detection and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. ANAL. SCI. 40, 133–139 (2024). https://doi.org/10.1007/s44211-023-00443-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00443-0

Keywords

Navigation