Skip to main content
Log in

Real-time three-dimensional micro-imaging of liquid front in spreading sessile droplet under transient spreading states

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Dynamic wetting behaviors of sessile droplets on substrates play crucial roles for various industrial chemical processes. In the case of complete wetting, it has been proposed that a precursor film which is nanometer-order thickness and micrometer-order length further expands outside the macroscopic contact line of the sessile droplet. While the time evolution of the precursor film is believed to strikingly affect the macroscopic wetting behavior (e.g., spreading velocity), it had been hard to visualize the three-dimensional shape of the precursor film at the early stage of wetting. Further, although the spreading velocity rapidly decreases upon time at the early stage of the wetting (transient state) and then converged to be a constant at later time (steady state), conventional fluid mechanics theories generally describe only the wetting behavior at the steady state. Therefore, experimental observation of time evolution of the precursor film shape in the transient state is essential to proceed the theories to the next step. Here, a monochromatic laser interference microscope was developed to visualize three-dimensional shape of the wetting front of sessile droplets in real time. By detecting an interference of the laser reflected at the liquid and substrate surfaces, the precursor film was successfully visualized with a time resolution of 20 ms and a thickness resolution of about 3.5 nm at worst. For 10 cSt silicone oil on Si substrate, a 60-nm-thick and 70-μm-long precursor film was observed for 2–10 min after dropping and its spreading velocity which decreased with time was quantitatively analyzed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. L. Cisneros-Zevallos, J.M. Krochta, J. Food Sci. 68, 503–510 (2003)

    Article  CAS  Google Scholar 

  2. B. He, S. Yang, Z. Qin, B. Wen, C. Zhang, Sci. Rep. 7, 11841 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  3. P. Bishnoi, M. Sinha, Int. J. Heat Technol. 36, 1005–1009 (2018)

    Article  Google Scholar 

  4. X.M. Xu, J. Smeers, G. Vereecke, H. Struyf, Solid State Phenom. 195, 223–226 (2012)

    Article  Google Scholar 

  5. M. Shiraishi, S. Urashima, T. Morisaku, R. Takahashi, K. Matsuo, H. Yui, J. Colloid Interface Sci. 584, 723–728 (2021)

    Article  CAS  PubMed  Google Scholar 

  6. A.M. Peters, C. Pirat, M. Sbragaglia, B.M. Borkent, M. Wessling, D. Lohse, R.G. Lammertink, Eur. Phys. J. E Soft Matter 29, 391–397 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. L. Introzzi, J.M. Fuentes-Alventosa, C.A. Cozzolino, S. Trabattoni, S. Tavazzi, C.L. Bianchi, A. Schiraldi, L. Piergiovanni, S. Farris, A.C.S. Appl, Mater. Interfaces 4, 3692–3700 (2012)

    Article  CAS  Google Scholar 

  8. M.A. Waldo-Mendoza, Z.V. Quinones-Jurado, J.C. Perez-Medina, B. Yanez-Soto, P.E. Ramirez-Gonzalez, Membranes (Basel) 7, 11 (2017)

    Article  PubMed  Google Scholar 

  9. M. Kobayashi, Y. Terayama, H. Yamaguchi, M. Terada, D. Murakami, K. Ishihara, A. Takahara, Langmuir 28, 7212–7222 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. Z. Li, Z. Guo, Nanoscale 11, 22636–22663 (2019)

    Article  CAS  PubMed  Google Scholar 

  11. Y.-Y. Quan, L.-Z. Zhang, R.-H. Qi, R.-R. Cai, Sci. Rep. 6, 38239 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Y.-Y. Quan, Z. Chen, Y. Lai, Z.-S. Huang, H. Li, Mater. Chem. Front. 5, 1655–1682 (2021)

    Article  CAS  Google Scholar 

  13. M. Edalatpour, L. Liu, A.M. Jacobi, K.F. Eid, A.D. Sommers, Appl. Energy 222, 967–992 (2018)

    Article  Google Scholar 

  14. R. Sedev, Adv. Colloid Interface Sci. 222, 661–669 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. A.M. Karim, W.J. Suszynski, Fluids 7, 318 (2022)

    Article  Google Scholar 

  16. Y. Nakamura, A. Carlson, G. Amberg, J. Shiomi, Phys. Rev. E 88, 033010 (2013)

    Article  Google Scholar 

  17. A. Hubao, Z. Yang, R. Hu, Y.-F. Chen, L. Yang, J. Phys. Chem. C 124, 23260–23269 (2020)

    Article  Google Scholar 

  18. Y. Yu, X. Xu, J. Liu, Y. Liu, W. Cai, J. Chen, Surf. Sci. 714, 121916 (2021)

    Article  CAS  Google Scholar 

  19. H. Wang, Langmuir 35, 10233–10245 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. P.G. de Gennes, Rev. Mod. Phys. 57, 827–863 (1985)

    Article  Google Scholar 

  21. O.V. Voinov, Fluid Dyn. 11, 714–721 (1977)

    Article  Google Scholar 

  22. R.G. Cox, J. Fluid Mech. 168, 169–194 (1986)

    Article  CAS  Google Scholar 

  23. R.G. Cox, J. Fluid Mech. 357, 249–278 (1998)

    Article  CAS  Google Scholar 

  24. T. Qian, X.P. Wang, P. Sheng, Phys. Rev. E 68, 016306 (2003)

    Article  Google Scholar 

  25. L. Leger, M. Erman, A.M. Guinet-Picard, D. Ausserre, C. Strazielle, Phys. Rev. Lett. 60, 2390–2393 (1988)

    Article  CAS  PubMed  Google Scholar 

  26. M.N. Popescu, G. Oshanin, S. Dietrich, A.M. Cazabat, J. Phys. Condens. Matter 24, 243102 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. D. Beaglehole, J. Phys. Chem. 93, 893–899 (1989)

    Article  CAS  Google Scholar 

  28. H.P. Kavehpour, B. Ovryn, G.H. McKinley, Phys. Rev. Lett. 91, 196104 (2003)

    Article  PubMed  Google Scholar 

  29. A. Hoang, H.P. Kavehpour, Phys. Rev. Lett. 106, 254501 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. I. Ueno, K. Hirose, Y. Kizaki, Y. Kisara, Y. Fukuhara, J. Heat Transfer 134, 051008 (2012)

    Article  Google Scholar 

  31. S. Hashimoto, C. Hong, I. Ueno, J. Therm. Sci. Technol. 7, 487–496 (2012)

    Article  CAS  Google Scholar 

  32. K.A. Melzak, F. Laye, S. Heissler, Langmuir 36, 10490–10493 (2020)

    Article  CAS  PubMed  Google Scholar 

  33. W.B. Hardy, Phil. Mag. 38, 49–55 (1919)

    Article  CAS  Google Scholar 

  34. J.F. Joanny, P.G. de Gennes, J. Physique 47, 121–127 (1986)

    Article  Google Scholar 

  35. E. Shoji, T. Kaneko, T. Yonemura, M. Kubo, T. Tsukada, A. Komiya, Exp. Fluids 62, 206 (2021)

    Article  CAS  Google Scholar 

  36. M. Kawamoto, S. Urashima, M. Banno, H. Yui, Anal. Sci. 39, 1327–1332 (2023)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by AMED under Grant Number JP21gm1510004.

Funding

Japan Agency for Medical Research and Development, JP21gm1510004, Hiroharu Yui.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroharu Yui.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urashima, Sh., Tanitsu, M., Kawamoto, M. et al. Real-time three-dimensional micro-imaging of liquid front in spreading sessile droplet under transient spreading states. ANAL. SCI. 40, 75–83 (2024). https://doi.org/10.1007/s44211-023-00432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00432-3

Keywords

Navigation