Skip to main content
Log in

A comprehensive evaluation of a polymeric zwitterionic hydrophilic monolith for nucleotide separation

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Rapid and effective separation of nucleotides (NTs) and their derivatives is crucial for studying their physiological functions. In this work, we comprehensively evaluated the separation ability of a zwitterionic hydrophilic monolith, i.e., poly(N,N-dimethyl-N-(3-methacrylamidopropyl)-N-(3-sulfopropyl)ammonium betaine-co–N,N’-methylenebisacrylamide) (poly(SPP-co-MBA)) for NTs analysis, including its selectivity, chemical stability under extremely basic condition and compatibility with hydrophilic interaction liquid chromatography (HILIC) coupled with mass spectrometry (HILIC-MS). The poly(SPP-co-MBA) monolith exhibited excellent chemical stability, as evidenced by the low relative standard deviation of retention time (0.16–1.05%) after 4000 consecutive injections over one month under strong alkaline elution condition (pH 10). After optimizing the separation conditions, including buffer pH and concentration, organic solvent content and column temperature, four nucleoside triphosphates, five nucleoside diphosphates and five nucleoside monophosphates were baseline separated within 7 min. Additionally, the mixtures containing one nucleoside and its corresponding mono-, di-, and triphosphates were baseline separated within only 3 min, respectively. It is good HILIC-MS compatibility was also confirmed by the satisfactory peak shape and high response of nine NTs. Overall, the proposed poly(SPP-co-MBA) monolith exhibited good mechanical stability and compatibility of HILIC-MS, making it a promising technique for NTs analysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed in this study are included in this published article and its supplementary information files.

References

  1. D. Kalia, G. Merey, S. Nakayama, Y. Zheng, J. Zhou, Y.L. Luo, M. Guo, B.T. Roembke, H.O. Sintim, Chem. Soc. Rev. 42, 305–341 (2013). https://doi.org/10.1039/c2cs35206k

    Article  CAS  PubMed  Google Scholar 

  2. K. Uhlmann, A. Brinckmann, M.R. Toliat, H. Ritter, P. Nürnberg, Electrophoresis 23, 4072–4079 (2002). https://doi.org/10.1002/elps.200290023

    Article  CAS  PubMed  Google Scholar 

  3. E. Fromentin, C. Gavegnano, A. Obikhod, R.F. Schinazi, Anal. chem. 82, 1982–1989 (2010). https://doi.org/10.1021/ac902737j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. D. Moravcová, M. Haapala, J. Planeta, T. Hyötyläinen, R. Kostiainen, S.K. Wiedmer, J. Chromatogr. A 1373, 90–96 (2014). https://doi.org/10.1016/j.chroma.2014.11.015

    Article  CAS  PubMed  Google Scholar 

  5. J.E. Vela, L.Y. Olson, A. Huang, A. Fridland, A.S. Ray, J. Chromatogr. A 848, 335–343 (2007). https://doi.org/10.1016/j.jchromb.2006.10.063

    Article  CAS  Google Scholar 

  6. M.L. Mole, D.L. Hunter, P. Gao, C. Lau, Anal. Biochem. 259, 245–252 (1998). https://doi.org/10.1006/abio.1998.2647

    Article  CAS  PubMed  Google Scholar 

  7. T. Ikegami, K. Tomomatsu, H. Takubo, K. Horie, N. Tanaka, J. Chromatogr. A 1184, 474–503 (2008). https://doi.org/10.1016/j.chroma.2008.01.075

    Article  CAS  PubMed  Google Scholar 

  8. D.G. Gómez, E.R. Gonzalo, R.C. Martínez, TrAC-Trend. Anal. Chem. 47, 111–128 (2013). https://doi.org/10.1016/j.trac.2013.02.011

    Article  CAS  Google Scholar 

  9. G.D. Zhang, A.D. Walker, Z.S. Lin, X.G. Han, J. Chromatogr. A 1325, 129–136 (2014). https://doi.org/10.1016/j.chroma.2013.12.017

    Article  CAS  PubMed  Google Scholar 

  10. S.U. Bajad, W.Y. Lu, E.H. Kimball, J. Yuan, C. Peterson, J.D. Rabinowitz, J. Chromatogr. A 1125, 76–88 (2006). https://doi.org/10.1016/j.chroma.2006.05.019

    Article  CAS  PubMed  Google Scholar 

  11. C. Virgiliou, I. Sampsonidis, H.G. Gika, N. Raikos, G.A. Theodoridis, Electrophoresis 36, 2215–2225 (2015). https://doi.org/10.1002/elps.201500208

    Article  CAS  PubMed  Google Scholar 

  12. E. Johnsen, S.R. Wilson, I. Odsbu, A. Krapp, H. Malerod, K. Skarstad, E. Lundanes, J. Chromatogr. A 1218, 5981–5986 (2011). https://doi.org/10.1016/j.chroma.2011.01.066

    Article  CAS  PubMed  Google Scholar 

  13. B. Preinerstorfer, S. Schiesel, M. Lämmerhofer, W. Lindner, J. Chromatogr. A 1217, 312–328 (2010). https://doi.org/10.1016/j.chroma.2009.11.051

    Article  CAS  PubMed  Google Scholar 

  14. E. Zborníková, Z. Knejzlík, V. Hauryliuk, L. Krásný, D. Rejman, Talanta 205, 120161 (2019). https://doi.org/10.1016/j.talanta.2019.120161

    Article  CAS  PubMed  Google Scholar 

  15. L.Z. Gong, J.S.O. McCullagh, J. Chromatogr. A 1218, 5480–5486 (2011). https://doi.org/10.1016/j.chroma.2011.06.044

    Article  CAS  PubMed  Google Scholar 

  16. B.J. Zhu, H. Wei, Q.J. Wang, F.G. Li, J.Y. Dai, C. Yan, Y. Cheng, Talanta 179, 615–623 (2018). https://doi.org/10.1016/j.talanta.2017.11.054

    Article  CAS  PubMed  Google Scholar 

  17. A. Teleki, A.S. Kopper, R. Takors, Anal. Biochem. 475, 4–13 (2015). https://doi.org/10.1016/j.ab.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  18. W. Goutier, P.A. Spaans, M.A.W.V.D. Neut, A.C. McCreary, J.H. Reinders, J. Neurosci. Methods Neurosci. Methods 188, 24–31 (2010). https://doi.org/10.1016/j.jneumeth.2010.01.027

    Article  CAS  Google Scholar 

  19. Z.J. Jiang, N.W. Smith, Z.H. Liu, J. Chromatogr. AChromatogr. A. 1218, 2350–2361 (2011). https://doi.org/10.1016/j.chroma.2011.02.024

    Article  CAS  Google Scholar 

  20. Z.J. Jiang, N.W. Smith, P.D. Ferguson, M.R. Taylor, Anal. Chem. 19(3), 1243–1250 (2007). https://doi.org/10.1021/ac061871f

    Article  CAS  Google Scholar 

  21. Q.Q. Wang, L.J. Sun, H.H. Wu, N. Deng, X.L. Zhao, J.W. Zhou, T.T. Zhang, H. Han, Z.J. Jiang, J. Pharm. Anal. 12, 783–790 (2022). https://doi.org/10.1016/j.jpha.2022.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Z.J. Jiang, J. Reilly, B. Everatt, N.W. Smith, J. Chromatogr. A 1216, 2439–2448 (2009). https://doi.org/10.1016/j.chroma.2009.01.028

    Article  CAS  PubMed  Google Scholar 

  23. Q.Q. Wang, H.H. Wu, K. Peng, H.Y. Jin, H.K. Shao, Y.Q. Wang, J. Crommen, Z.J. Jiang, Anal. Chim. Acta 999, 184–189 (2018). https://doi.org/10.1016/j.aca.2017.11.032

    Article  CAS  PubMed  Google Scholar 

  24. C.S. Liu, H.B. Li, Q.Q. Wang, J. Crommen, H.B. Zhou, Z.J. Jiang, J. Chromatogr. A 1509, 83–90 (2017). https://doi.org/10.1016/j.chroma.2017.06.034

    Article  CAS  PubMed  Google Scholar 

  25. C.S. Liu, W.J. Chen, G.X. Yuan, Y. Xiao, J. Crommen, S.H. Xu, Z.J. Jiang, J. Chromatogr. A 1373, 73–80 (2014). https://doi.org/10.1016/j.chroma.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  26. R.I. Chirita, C. West, S. Zubrzycki, A.L. Finaru, C. Elfakir, J. Chromatogr. A 1218, 5939–5963 (2011). https://doi.org/10.1016/j.chroma.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  27. Y. Takegawa, K. Deguchi, H. Ito, T. Keira, H. Nakagawa, S.I. Nishimura, J. Sep. Sci. 29, 2533–2540 (2006). https://doi.org/10.1002/jssc.200600133

    Article  CAS  PubMed  Google Scholar 

  28. A.J. Alpert, Anal. chem. 80, 62–76 (2008). https://doi.org/10.1021/ac070997p

    Article  CAS  PubMed  Google Scholar 

  29. G.X. Yuan, Y.B. Peng, Z.H. Liu, J.Y. Hong, Y. Xiao, J.L. Guo, N.W. Smith, J. Crommen, Z.J. Jiang, J. Chromatogr. A 1301, 88–97 (2013). https://doi.org/10.1016/j.chroma.2013.05.063

    Article  CAS  PubMed  Google Scholar 

  30. H.B. Li, C.S. Liu, Q.Q. Wang, H.B. Zhou, Z.J. Jiang, J. Chromatogr. A 1469, 77–87 (2016). https://doi.org/10.1016/j.chroma.2016.09.059

    Article  CAS  PubMed  Google Scholar 

  31. L.Z. Qiao, A.B. Dou, X.Z. Shi, H. Li, Y.H. Shan, X. Lu, G.W. Xu, J. Chromatogr. A 1286, 137–145 (2013). https://doi.org/10.1016/j.chroma.2013.02.066

    Article  CAS  PubMed  Google Scholar 

  32. J.A. Alpert, J. Chromatogr. A 499, 177–196 (1990). https://doi.org/10.1016/S0021-9673(00)96972-3

    Article  CAS  Google Scholar 

  33. Z.G. Hao, B.M. Xiao, N.D. Weng, J. Sep. Sci. 31, 1449–1464 (2008). https://doi.org/10.1002/jssc.200700624

    Article  CAS  PubMed  Google Scholar 

  34. Y. Guo, S. Gaiki, J. Chromatogr. A 1074, 71–80 (2005). https://doi.org/10.1016/j.chroma.2005.03.058

    Article  CAS  PubMed  Google Scholar 

  35. R.D. Mountain, J. Phys. Chem. A 103, 10744–10748 (1999). https://doi.org/10.1021/jp992305+

    Article  CAS  Google Scholar 

  36. Y.Z. Chen, K.Y. Wang, Y.X. Liu, H.H. Yang, S.Z. Yao, B. Chen, L.H. Nie, G.M. Xu, Electrophoresis 34, 1877–1885 (2013). https://doi.org/10.1002/elps.201200600

    Article  CAS  PubMed  Google Scholar 

  37. S. Arase, S. Kimura, T. Ikegami, J. Pharm. Biomed. Anal. 158, 307–316 (2018). https://doi.org/10.1016/j.jpba.2018.05.014

    Article  CAS  PubMed  Google Scholar 

  38. M.M. Vivas, E.R. Gonzalo, D.G. Gómez, R.C. Martínez, J. Chromatogr. A 1414, 129–137 (2015). https://doi.org/10.1016/j.chroma.2015.08.040

    Article  CAS  Google Scholar 

  39. D. Moravcová, J. Planeta, J. Ind. Chem. 46, 39–42 (2018). https://doi.org/10.1515/hjic-2018-0009

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (Grant number: 82104115, 82173781), Guangdong Basic and Applied Basic Research Foundation (Grant number: 2020A1515110867), Science and Technology Innovation Project of Guangdong Drug Administration (Grant number: 2022ZDB04), and China Postdoctoral Science Foundation (2022M721355), Key Field Projects of Guangdong Universities (Intelligent Manufacturing) (2020ZDZX2057).

Author information

Authors and Affiliations

Authors

Contributions

Experiment, methodology, writing—original draft preparation, LL; Experiment, methodology, partial of writing—original draft preparation, MZ; Experiment, methodology, partial of writing—original draft preparation, CL; Partial of the experiments, writing—review and editing, JQ; Writing—review and editing, project administration, DX; Conceptualization, supervision, writing—review and editing, project administration, funding acquisition, ZJ. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Dongsheng Xu or Zhengjin Jiang.

Ethics declarations

Conflict of interest

The authors declare no confict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1260 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, L., Zhang, M., Liu, C. et al. A comprehensive evaluation of a polymeric zwitterionic hydrophilic monolith for nucleotide separation. ANAL. SCI. 40, 85–91 (2024). https://doi.org/10.1007/s44211-023-00430-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00430-5

Keywords

Navigation