Skip to main content
Log in

Wireless Powered Moisture Sensors for Smart Agriculture and Pollution Prevention: Opportunities, Challenges, and Future Outlook

  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The ability to monitor soil moisture wirelessly can deliver immense benefits to annual crops. Real-time soil moisture monitoring allows for accurate and on-demand irrigation to achieve optimal growth and avoid overwatering. It is also an effective pollution prevention method, eliminating excessive run-off to prevent soil erosion, sediment discharge, and the dispersion of key water pollutants such as nitrogen and phosphorus to natural waterway. Current soil moisture sensors require constant a power supply or battery. Wiring can be used for soil moisture sensing of perennial crops but is also not suitable for annual crops that require significant tillage. This review aims to delineate the readiness of moisture sensors and wireless power transfer technology for developing a wireless soil moisture sensing network.

Recent Findings

Of the many types of soil moisture sensors, only a few are compatible to a wireless network. They either are too expensive, have unreliable measurement accuracy, or require too much power. This review shows that capacitive sensor is a potential candidate for underground sensor networks in terms of affordability, measurement reliability, and power consumption. In addition, among all currently available wireless power transfer technologies, inductive power transfer has the potential to supply adequate power for wirelessly charging underground sensors and meet other requirements of an underground sensing network.

Summary

This review evaluates available soil moisture sensing and wireless power transfer techniques for wireless underground moisture sensing. The combination of capacitive sensing and inductive power transfer technologies has been identified as a potential solution for wireless underground sensor networks. Future research should focus on improving the calibration and post-processing algorithm for capacitive sensor while the misalignment and impact of soil need to be considered to enhance the performance of the inductive power transfer system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data is include in this journal.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lin F, Weng Y, Chen H, Zhuang P. Intelligent greenhouse system based on remote sensing images and machine learning promotes the efficiency of agricultural economic growth. Environ Technol Innov. 2021;24: 101758. https://doi.org/10.1016/j.eti.2021.101758.

    Article  Google Scholar 

  2. Bwambale E, Abagale FK, Anornu GK. Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: a review. Agric Water Manag. 2022;260: 107324. https://doi.org/10.1016/j.agwat.2021.107324.

    Article  Google Scholar 

  3. Liao R, Zhang S, Zhang X, Wang M, Wu H, Zhangzhong L. Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: proof of concept. Agric Water Manag. 2021;245: 106632. https://doi.org/10.1016/j.agwat.2020.106632.

    Article  Google Scholar 

  4. Wheeler WD, Chappell M, van Iersel M, Thomas P. Implementation of soil moisture sensor based automated irrigation in woody ornamental production. J Environ Hortic. 2020;38(1):1–7. https://doi.org/10.24266/0738-2898-38.1.1.

    Article  Google Scholar 

  5. Davis AM, Pearson RG, Brodie JE, Butler B, Davis AM, Pearson RG, et al. Review and conceptual models of agricultural impacts and water quality in waterways of the Great Barrier Reef catchment area. Mar Freshw Res. 2016;68(1):1–19. https://doi.org/10.1071/MF15301.

    Article  CAS  Google Scholar 

  6. Buckwell A, Ribbeck M, Dyke J, Smart J, Edeson G. Identifying innovation discourses for nitrogen management in the sugarcane sector in Great Barrier Reef catchments using Q-methodology. Mar Pollut Bull. 2023;191: 114851. https://doi.org/10.1016/j.marpolbul.2023.114851.

    Article  CAS  Google Scholar 

  7. Reid M, Kalcsits L. Water deficit timing affects physiological drought response, fruit size, and bitter pit development for ‘Honeycrisp’ apple. Plants. 2020;9(7):874. https://doi.org/10.3390/plants9070874.

    Article  CAS  Google Scholar 

  8. Gałęzewski L, Jaskulska I, Jaskulski D, Lewandowski A, Szypłowska A, Wilczek A, et al. Analysis of the need for soil moisture, salinity and temperature sensing in agriculture: a case study in Poland. Sci Rep. 2021;11(1):16660. https://doi.org/10.1038/s41598-021-96182-1.

    Article  CAS  Google Scholar 

  9. Bogena HR, Weuthen A, Huisman JA. Recent developments in wireless soil moisture sensing to support scientific research and agricultural management. Sensors. 2022;22(24):9792. https://doi.org/10.3390/s22249792.

    Article  Google Scholar 

  10. Jackisch C, Germer K, Graeff T, Andrä I, Schulz K, Schiedung M, et al. Soil moisture and matric potential – an open field comparison of sensor systems. Earth System Science Data. 2020;12(1):683–97. https://doi.org/10.5194/essd-12-683-2020.

    Article  Google Scholar 

  11. McGregor DS, Bellinger SL, Bruno D, Cowley SA, Dunn WL, Elazegui M, et al. Wireless neutron and gamma ray detector modules for dosimetry and remote monitoring. 2007 IEEE Nuclear Science Symposium Conference Record2007. p. 808–12.

  12. Jorapur N, Palaparthy VS, Sarik S, John J, Baghini MS, Ananthasuresh GK. A low-power, low-cost soil-moisture sensor using dual-probe heat-pulse technique. Sens Actuators, A. 2015;233:108–17. https://doi.org/10.1016/j.sna.2015.06.026.

    Article  CAS  Google Scholar 

  13. Ravazzani G. Open hardware portable dual-probe heat-pulse sensor for measuring soil thermal properties and water content. Comput Electron Agric. 2017;133:9–14. https://doi.org/10.1016/j.compag.2016.12.012.

    Article  Google Scholar 

  14. Qin P, Deng Y, Cui Y, Ye W. Development and application of TDR mini-probes for monitoring moisture in small-scale laboratory tests. International Journal of Civil Engineering. 2023. https://doi.org/10.1007/s40999-022-00772-7.

    Article  Google Scholar 

  15. Pandey G, Kumar R, Weber RJ. Real time detection of soil moisture and nitrates using on-board in-situ impedance spectroscopy. IEEE; 2013. p. 1081–6.

  16. Manatrinon S, Chantaweesomboon W, Chinrungrueng J, Kaemarungsi K. Moisture sensor based on standing wave ratio for agriculture industry. 2016 7th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES)2016. p. 51–6.

  17. Gao C, Zhao Y, Zhao Y. A novel sensor for noninvasive detection of in situ stem water content based on standing wave ratio. Journal of Sensors. 2019;2019: e3594964. https://doi.org/10.1155/2019/3594964.

    Article  CAS  Google Scholar 

  18. González-Teruel JD, Torres-Sánchez R, Blaya-Ros PJ, Toledo-Moreo AB, Jiménez-Buendía M, Soto-Valles F. Design and calibration of a low-cost SDI-12 soil moisture sensor. Sensors. 2019;19(3):491. https://doi.org/10.3390/s19030491.

    Article  CAS  Google Scholar 

  19. Zhu Y, Irmak S, Jhala AJ, Vuran MC, Diotto A. Time-domain and frequency-domain reflectometry type soil moisture sensor performance and soil temperature effects in fine- and coarse-textured soils. Appl Eng Agric. 2019;35(2):117–34. https://doi.org/10.13031/aea.12908.

    Article  Google Scholar 

  20. Chen HB, Ye LM, Shi LK. An analysis of the effects on calibration parameters of FDR for moisture sensor caused by different kinds of soils. Appl Mech Mater. 2013;401–403:968–73. https://doi.org/10.4028/www.scientific.net/AMM.401-403.968.

    Article  Google Scholar 

  21. Shukla A, Panchal H, Mishra+ M, Patel P, Srivastava H, Patel P, et al. Soil moisture estimation using gravimetric technique and FDR probe technique: a comparative analysis. American International Journal of Research in Formal, Applied & Natural Sciences. 2014;14:89–92.

  22. Kumar MS, Chandra TR, Kumar DP, Manikandan MS. Monitoring moisture of soil using low cost homemade soil moisture sensor and Arduino UNO. IEEE; 2016. p. 1–4.

  23. Skierucha W. Accuracy of soil moisture measurement by TDR technique. International Agrophysics. 2000;14.

  24. Robinson DA, Jones SB, Wraith JM, Or D, Friedman SP. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone Journal. 2003;2(4):444–75. https://doi.org/10.2136/vzj2003.4440.

    Article  CAS  Google Scholar 

  25. Vaz CMP, Porto LF, D´Alkaine CI, Bassoi LH, Neto AT, Hopmans JW, et al. Design and characterization of a pneumatic micro glass beads matrix sensor for soil water potential threshold control in irrigation management. Irrigation Science. 2022;40(3):397–405. doi: https://doi.org/10.1007/s00271-022-00791-1.

  26. Agency IAE. Comparison of soil water measurement using the neutron scattering, time domain reflectometry and capacitance methods. International Atomic Energy Agency; 2000. p. 1–170.

  27. Morais Franca MB, Morais FJO, Carvalhaes-Dias P, Duarte LC, Siqueira Dias JA. A multiprobe heat pulse sensor for soil moisture measurement based on PCB technology. IEEE Trans Instrum Meas. 2019;68(2):606–13. https://doi.org/10.1109/TIM.2018.2843605.

    Article  Google Scholar 

  28. Skierucha W, Wilczek A, Szypłowska A, Sławiński C, Lamorski K. A TDR-based soil moisture monitoring system with simultaneous measurement of soil temperature and electrical conductivity. Sensors. 2012;12(10):13545–66. https://doi.org/10.3390/s121013545.

    Article  Google Scholar 

  29. Adelakun IA, Sri RR. Design of a multilevel TDR probe for measuring soil water content at different depths. Trans ASABE. 2013;56:1451–60. https://doi.org/10.13031/trans.56.100109.

    Article  Google Scholar 

  30. Pandey G, Weber RJ, Kumar R. Agricultural cyber-physical system: in-situ soil moisture and salinity estimation by dielectric mixing. IEEE Access. 2018;6:43179–91. https://doi.org/10.1109/ACCESS.2018.2862634.

    Article  Google Scholar 

  31. Deng X, Gu H, Yang L, Lyu H, Cheng Y, Pan L, et al. A method of electrical conductivity compensation in a low-cost soil moisture sensing measurement based on capacitance. Measurement. 2020;150: 107052. https://doi.org/10.1016/j.measurement.2019.107052.

    Article  Google Scholar 

  32. Saleh M, Elhajj IH, Asmar D, Bashour I, Kidess S. Experimental evaluation of low-cost resistive soil moisture sensors. 2016 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET)2016. p. 179–84.

  33. •• Sanchez J, Arteaga JM, Zeisiger C, Young DJ, Goel R, Mitcheson PD, et al. Integration of a high frequency inductive power transfer system to energize agricultural sensors through soil. 2022;366–71. This article presents the complete design of an IPT system to wirelessly charge under ground sensors.

  34. Nguyen TH, Tran MN, Le QH, Vu TA, Nguyen QC, Nguyen DD, et al. Smart shoe based on battery-free Bluetooth low energy sensor. In: Vo N-S, Hoang V-P, Vien Q-T, editors.: Springer International Publishing; 2021. p. 156–66.

  35. • Robinson CA, Nieman BT, Craven R, Bima ME, Van Neste CW. Development of a wireless power transmission system for agriculture sensor devices. IEEE. 2020;2360–4. This article proposes a novel approach to wirelessly charge under ground sensors by using soil as a conductive medium.

  36. • Amiri M, Abolhasan M, Shariati N, Lipman J. RF-self-powered sensor for fully autonomous soil moisture sensing. IEEE Trans Microw Theory Techniques. 2023;71(3):1374–87. https://doi.org/10.1109/TMTT.2022.3222222. This article proposes a metamaterial absorber for both RF energy harvesting and soil moisture sensing tasks.

  37. Liu M, Zhang H, Shao Y, Song J, Ma C. High-performance megahertz wireless power transfer: topologies, modeling, and design. IEEE Ind Electron Mag. 2021;15(1):28–42. https://doi.org/10.1109/MIE.2020.3002516.

    Article  Google Scholar 

  38. Dung LT, Huyen Trang HT, Choi S-G, Hwang SO. Impact of soil medium on the path connectivity of sensors in wireless underground sensor networks. 2016 International Conference on Advanced Technologies for Communications (ATC)2016. p. 60–4.

  39. Xie L, Shi Y, Hou YT, Lou A. Wireless power transfer and applications to sensor networks. IEEE Wirel Commun. 2013;20(4):140–5. https://doi.org/10.1109/MWC.2013.6590061.

    Article  Google Scholar 

  40. He S, Chen J, Jiang F, Yau DKY, Xing G, Sun Y. Energy provisioning in wireless rechargeable sensor networks. IEEE; 2011. p. 2006–14.

  41. Khang S-T, Lee D-J, Hwang I-J, Yeo T-D, Yu J-W. Microwave power transfer with optimal number of rectenna arrays for midrange applications. IEEE Antennas Wirel Propag Lett. 2018;17(1):155–9. https://doi.org/10.1109/LAWP.2017.2778507.

    Article  Google Scholar 

  42. Dong Y, Dong SW, Wang Y, Liu S, Li X, Gao S, et al. Focused microwave power transmission system with high-efficiency rectifying surface. IET Microwaves Antennas Propag. 2018;12(5):808–13. https://doi.org/10.1049/iet-map.2017.0530.

    Article  Google Scholar 

  43. Suh Y-H, Chang K. A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission. IEEE Transactions on Microwave Theory and Techniques. 2002;50(7):1784–9. doi: https://doi.org/10.1109/TMTT.2002.800430.

  44. Takahashi T, Sasaki T, Homma Y, Mihara S, Sasaki K, Nakamura S, et al. Phased array system for high efficiency and high accuracy microwave power transmission. IEEE; 2016. p. 1–7.

  45. Hui Q, Jin K, Zhu X. Directional radiation technique for maximum receiving power in microwave power transmission system. IEEE Trans Industr Electron. 2020;67(8):6376–86. https://doi.org/10.1109/TIE.2019.2941150.

    Article  Google Scholar 

  46. Dang K, Zhang J, Zhou H, Huang S, Zhang T, Bian Z, et al. A 5.8-GHz high-power and high-efficiency rectifier circuit with lateral GaN Schottky diode for wireless power transfer. IEEE Transactions on Power Electronics. 2020;35(3):2247–52. doi: https://doi.org/10.1109/TPEL.2019.2938769.

  47. Jin K, Zhou W. Wireless laser power transmission: a review of recent progress. IEEE Trans Power Electron. 2019;34(4):3842–59. https://doi.org/10.1109/TPEL.2018.2853156.

    Article  Google Scholar 

  48. Ortabasi U, Friedman H. Powersphere: a photovoltaic cavity converter for wireless power transmission using high power lasers. 2006. p. 126–9.

  49. He T, Yang S-H, Zhang H-Y, Zhao C-M, Zhang Y-C, Xu P, et al. High-power high-efficiency laser power transmission at 100 m using optimized multi-cell GaAs converter. Chin Phys Lett. 2014;31(10): 104203. https://doi.org/10.1088/0256-307X/31/10/104203.

    Article  CAS  Google Scholar 

  50. Zhang Q, Fang W, Liu Q, Wu J, Xia P, Yang L. Distributed laser charging: a wireless power transfer approach. IEEE Internet Things J. 2018;5(5):3853–64. https://doi.org/10.1109/JIOT.2018.2851070.

    Article  Google Scholar 

  51. Zhang Z, Pang H, Georgiadis A, Cecati C. Wireless power transfer—an overview. IEEE Trans Industr Electron. 2019;66(2):1044–58. https://doi.org/10.1109/TIE.2018.2835378.

    Article  Google Scholar 

  52. Park C, Lee S, Cho G-H, Rim CT. Innovative 5-m-off-distance inductive power transfer systems with optimally shaped dipole coils. IEEE Trans Power Electron. 2015;30(2):817–27. https://doi.org/10.1109/TPEL.2014.2310232.

    Article  Google Scholar 

  53. Luo S, Yao Z, Zhang Z, Li G, Zhang X, Ma H. A dual shunt inductor compensated IPT system with nearly unity power factor for wide load range and misalignment tolerance. IEEE Trans Industr Electron. 2022;69(10):10001–13. https://doi.org/10.1109/TIE.2022.3161811.

    Article  Google Scholar 

  54. Kurs A, Karalis A, Moffatt R, Joannopoulos JD, Fisher P, Soljačić M. Wireless power transfer via strongly coupled magnetic resonances. Science. 2007;317(5834):83–6. https://doi.org/10.1126/science.1143254.

    Article  CAS  Google Scholar 

  55. Duong TP, Lee J-W. Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method. IEEE Microwave Wirel Compon Lett. 2011;21(8):442–4. https://doi.org/10.1109/LMWC.2011.2160163.

    Article  Google Scholar 

  56. Kim J, Son H-c, Kim D-h, Park Y-j. Optimal design of a wireless power transfer system with multiple self-resonators for an LED TV. IEEE Transactions on Consumer Electronics. 2012;58(3):775–80. doi: https://doi.org/10.1109/TCE.2012.6311317.

  57. Li S, Liu Z, Zhao H, Zhu L, Shuai C, Chen Z. Wireless power transfer by electric field resonance and its application in dynamic charging. IEEE Trans Industr Electron. 2016;63(10):6602–12. https://doi.org/10.1109/TIE.2016.2577625.

    Article  Google Scholar 

  58. Liu C, Hu AP, Wang B, Nair N-KC. A capacitively coupled contactless matrix charging platform with soft switched transformer control. IEEE Transactions on Industrial Electronics. 2013;60(1):249–60. doi: https://doi.org/10.1109/TIE.2011.2172174.

  59. Abou Houran M, Yang X, Chen W. Magnetically coupled resonance WPT: review of compensation topologies, resonator structures with misalignment, and EMI diagnostics. Electronics. 2018;7(11):296. https://doi.org/10.3390/electronics7110296.

    Article  Google Scholar 

  60. Liu F, Yang Y, Jiang D, Ruan X, Chen X. Modeling and optimization of magnetically coupled resonant wireless power transfer system with varying spatial scales. IEEE Trans Power Electron. 2017;32(4):3240–50. https://doi.org/10.1109/TPEL.2016.2581840.

    Article  Google Scholar 

  61. Wang Y, Zhang H, Lu F. Review, analysis, and design of four basic CPT topologies and the application of high-order compensation networks. IEEE Trans Power Electron. 2022;37(5):6181–93. https://doi.org/10.1109/TPEL.2021.3131625.

    Article  Google Scholar 

  62. Wang S, Liang J, Fu M. Analysis and design of capacitive power transfer systems based on induced voltage source model. IEEE Trans Power Electron. 2020;35(10):10532–41. https://doi.org/10.1109/TPEL.2020.2981675.

    Article  Google Scholar 

  63. Zhang H, Lu F, Hofmann H, Mi C. A loosely coupled capacitive power transfer system with LC compensation circuit topology. IEEE; 2016. p. 1–5.

  64. Peng Y, Li Z, Zhang W, Qiao D. Prolonging sensor network lifetime through wireless charging. IEEE; 2010. p. 129–39.

  65. Chittoor PK, Bharatiraja C. Solar integrated wireless drone charging system for smart city applications. 2021 IEEE 6th International Conference on Computing, Communication and Automation (ICCCA)2021. p. 407–12.

  66. •• Arteaga JM, Mitcheson PD, Yeatman EM. Development of a fast-charging platform for buried sensors using high frequency IPT for agricultural applications. 2022 IEEE Applied Power Electronics Conference and Exposition (APEC) 2022. p. 1116–21. This article presents the complete design of an IPT system to wirelessly charge under ground sensors.

  67. Jawad AM, Jawad HM, Nordin R, Gharghan SK, Abdullah NF, Abu-Alshaeer MJ. Wireless power transfer with magnetic resonator coupling and sleep/active strategy for a drone charging station in smart agriculture. IEEE Access. 2019;7:139839–51. https://doi.org/10.1109/ACCESS.2019.2943120.

    Article  Google Scholar 

  68. Chabalko M, Besnoff J, Laifenfeld M, Ricketts DS. Resonantly coupled wireless power transfer for non-stationary loads with application in automotive environments. IEEE Trans Industr Electron. 2017;64(1):91–103. https://doi.org/10.1109/TIE.2016.2609379.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from The Australian APEC Study Centre in the form of an APEC-Australia Women in Research Fellowship to MTL. Associate Professor Diep Nguyen and Professor Eryk Dutkiewicz from the School of Electrical and Data Engineering, University of Technology Sydney, are thanked for their technical support and mentorship to the APEC-Australia Women in Research Fellow, MTL.

Author information

Authors and Affiliations

Authors

Contributions

Minh Thuy Le: data curation, writing–original draft, writing–review and editing; Chi Dat Pham: data curation, writing–original draft; Thi Phuong Thao Nguyen: data curation, writing–original draft; Long Nguyen Thanh: writing–original draft; Quoc Cuong Nguyen: supervision, visualization; Ngoc Bich Hoang: data curation; Long D. Nghiem: supervision, visualization; writing–review and editing.

Corresponding author

Correspondence to Long D. Nghiem.

Ethics declarations

Competing interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, M.T., Pham, C.D., Nguyen, T.P.T. et al. Wireless Powered Moisture Sensors for Smart Agriculture and Pollution Prevention: Opportunities, Challenges, and Future Outlook. Curr Pollution Rep 9, 646–659 (2023). https://doi.org/10.1007/s40726-023-00286-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-023-00286-3

Keywords

Navigation