Skip to main content
Log in

\(T\overline T\) deformation of the Calogero–Sutherland model via dimensional reduction

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive a general expression for the trace of the energy–momentum tensor \(T \kern0.9pt\overline{\vphantom{T}\kern6.0pt}\kern-6.9pt T \)-deformed field theories using a dynamical change of coordinates. Then we perform a dimensional reduction of the bilinear \(T \kern0.9pt\overline{\vphantom{T}\kern6.0pt}\kern-6.9pt T \) operator and obtain a new \(T \kern0.9pt\overline{\vphantom{T}\kern6.0pt}\kern-6.9pt T \)-like deformation of the quantum mechanics of free nonrelativistic fermions and the interacting Calogero–Sutherland system. The deformation leads to a change in the energy spectrum but does not affect the eigenfunctions. Furthermore, an expression for the deformed classical Lagrangian is obtained. We also study the correspondence between the two-dimensional Yang–Mills theory and the Calogero–Sutherland system in the presence of the deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Notes

  1. A \(T\overline T\)-perturbed 1D CFT was considered in [14]. The \({T_\lambda}^x_x\) component was identified with the field dual to the dilaton in the bulk.

  2. The additional eigenstates do not appear under the deformation in the case of a system with a finite number of degrees of freedom.

  3. Strictly speaking, a difference may appear because of counterterms related to operator ordering.

  4. The corresponding Young tableau is a row of \(N\gamma\) boxes.

References

  1. F. A. Smirnov and A. B. Zamolodchikov, “On space of integrable quantum field theories,” Nucl. Phys. B, 915, 363–383 (2017); arXiv: 1608.05499.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. A. Cavaglià, S. Negro, I. M. Szécsényi, and R. Tateo, “\(T\overline T\)-deformed 2D quantum field theories,” JHEP, 10, 112, 27 pp. (2016); arXiv: 1608.05534.

    Article  ADS  MATH  Google Scholar 

  3. Y. Jiang, “A pedagogical review on solvable irrelevant deformations of 2D quantum field theory,” Commun. Theor. Phys., 73, 057201, 39 pp. (2021); arXiv: 1904.13376.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. J. Cardy, “\(T\overline T\) deformations of non-Lorentz invariant field theories,” arXiv: 1809.07849.

  5. T. Bargheer, N. Beisert, and F. Loebbert, “Long-range deformations for integrable spin chains,” J. Phys. A, 42, 285205, 58 pp. (2009); arXiv: 0902.0956.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Bargheer, N. Beisert, and F. Loebbert, “Boosting nearest-neighbour to long-range integrable spin chains,” J. Stat. Mech., 2008, L11001, 10 pp. (2008); arXiv: 0807.5081.

    Article  Google Scholar 

  7. B. Pozsgay, Y. Jiang, and G. Takács, “\(T\overline T\)-deformation and long range spin chains,” JHEP, 03, 092, 21 pp. (2020); arXiv: 1911.11118.

    Article  ADS  MATH  Google Scholar 

  8. E. Marchetto, A. Sfondrini, and Z. Yang, “\(T\overline T\) deformations and integrable spin chains,” Phys. Rev. Lett., 124, 100601, 6 pp. (2020); arXiv: 1911.12315.

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Cardy and B. Doyon, “\(T\overline T\) deformations and the width of fundamental particles,” JHEP, 04, 136, 27 pp. (2022); arXiv: 2010.15733.

    Article  ADS  MATH  Google Scholar 

  10. Y. Jiang, “\(\mathrm T\overline{\mathrm T}\)-deformed 1d Bose gas,” SciPost Phys., 12, 191, 48 pp. (2022); arXiv: 2011.00637.

    Article  ADS  MathSciNet  Google Scholar 

  11. B. Chen, J. Hou, and J. Tian, “Note on the nonrelativistic \(T\overline T\) deformation,” Phys. Rev. D, 104, 025004, 15 pp. (2021).

    Article  ADS  Google Scholar 

  12. P. Ceschin, R. Conti, and R. Tateo, “\(\mathrm T\overline{\mathrm T}\)-deformed nonlinear Schrödinger,” JHEP, 04, 121, 22 pp. (2021); arXiv: 2012.12760.

    Article  ADS  Google Scholar 

  13. R. Conti, S. Negro, and R. Tateo, “The \(\mathrm T\overline{\mathrm T}\) perturbation and its geometric interpretation,” JHEP, 2, 085, 28 pp. (2019); arXiv:.1809.09593

    Article  ADS  MathSciNet  Google Scholar 

  14. D. J. Gross, J. Kruthoff, A. Rolph, and E. Shaghoulian, “\(T\overline{T}\) in \(\mathrm{AdS}_2\) and quantum mechanics,” Phys. Rev. D, 101, 026011, 20 pp. (2020).

    Article  ADS  MathSciNet  Google Scholar 

  15. D. J. Gross, J. Kruthoff, A. Rolph, and E. Shaghoulian, “Hamiltonian deformations in quantum mechanics, \(T\overline T\), and the SYK model,” Phys. Rev. D, 102, 046019, 17 pp. (2020).

    Article  ADS  MathSciNet  Google Scholar 

  16. L. McGough, M. Mezei, and H. Verlinde, “Moving the CFT into the bulk with \(T\overline T\) ,” JHEP, 04, 010, 33 pp. (2018); arXiv: 1611.03470.

    Article  ADS  MATH  Google Scholar 

  17. F. Calogero, “Ground state of one-dimensional \(N\) body system,” J. Math. Phys., 10, 2197–2200 (1969).

    Article  ADS  Google Scholar 

  18. B. Sutherland, “Exact results for a quantum many-body problem in one dimension,” Phys. Rev. A, 4, 2019–2021 (1971).

    Article  ADS  Google Scholar 

  19. J. Moser, “Three integrable Hamiltonian systems connnected with isospectral deformations,” Adv. Math., 16, 197–220 (1975).

    Article  ADS  MATH  Google Scholar 

  20. E. Bergshoeff and M. A. Vasiliev, “The Calogero model and the Virasoro symmetry,” Internat. J. Modern Phys. A, 10, 3477–3496 (1995); arXiv: hep-th/9411093.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. J. Cardy, “Calogero–Sutherland model and bulk-boundary correlations in conformal field theory,” Phys. Lett. B, 582, 121–126 (2004); arXiv: hep-th/0310291.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. A. G. Abanov and P. B. Wiegmann, “Quantum hydrodynamics, quantum Benjamin–Ono equation, and Calogero model,” Phys. Rev. Lett., 95, 076402, 4 pp. (2005); arXiv: cond-mat/0504041.

    Article  ADS  Google Scholar 

  23. M. Caselle and U. Magnea, “Random matrix theory and symmetric spaces,” Phys. Rept., 394, 41–156 (2004); arXiv: cond-mat/0304363.

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Ouvry and A. P. Polychronakos, “Mapping the Calogero model on the anyon model,” Nucl. Phys. B, 936, 189–205 (2018); arXiv: 1805.09899.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. A. Gorsky and A. Mironov, “Integrable many body systems and gauge theories,” in: Integrable Hierarchies and Modern Physical Theories (NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 18, H. Aratyn and A. S. Sorin, eds.), Springer, Dordrecht (2001), pp. 33–176; arXiv: hep-th/0011197.

    Chapter  MATH  Google Scholar 

  26. J. A. Minahan and A. P. Polychronakos, “Equivalence of two-dimensional QCD and the \(c=1\) matrix model,” Phys. Lett. B, 312, 155–165 (1993); arXiv: hep-th/9303153.

    Article  ADS  MathSciNet  Google Scholar 

  27. M. R. Douglas, “Conformal field theory techniques for large \(N\) group theory,” arXiv: hep-th/9303159.

  28. A. Gorsky and N. Nekrasov, “Hamiltonian systems of Calogero-type and two-dimensional Yang–Mills theory,” Nucl. Phys. B, 414, 213–238 (1994); arXiv: hep-th/9304047.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. A. Gorsky and N. Nekrasov, “Relativistic Calogero–Moser model as gauged WZW theory,” Nucl. Phys. B, 436, 582–608 (1995); arXiv: hep-th/9401017.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. J. A. Minahan and A. P. Polychronakos, “Interacting fermion systems from two-dimensional QCD,” Phys. Lett. B, 326, 288–294 (1994); arXiv: hep-th/9309044.

    Article  ADS  Google Scholar 

  31. R. Conti, L. Iannella, S. Negro, and R. Tateo, “Generalised Born–Infeld models, Lax operators and the \(T\overline{T}\) perturbation,” JHEP, 11, 007, 22 pp. (2018); arXiv: 1806.11515.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. L. Santilli and M. Tierz, “Large \(N\) phase transition in \(T\overline T\)-deformed 2d Yang–Mills theory on the sphere,” JHEP, 01, 054, 24 pp. (2019); arXiv: 1810.05404.

    Article  ADS  MATH  Google Scholar 

  33. T. D. Brennan, C. Ferko, and S. Sethi, “A non-abelian analogue of DBI from \(T\overline T\),” SciPost Phys., 8, 052, 18 pp. (2020); arXiv: 1912.12389.

    Article  ADS  Google Scholar 

  34. A. Ireland and V. Shyam, “\(T\overline T\) deformed YM\(_2\) on general backgrounds from an integral transformation,” JHEP, 07, 058, 17 pp. (2020); arXiv: 1912.04686.

    Article  ADS  Google Scholar 

  35. H. Babaei-Aghbolagh, K. B. Velni, D. M. Yekta, and H. Mohammadzadeh, “\( T\overline T \)-like flows in non-linear electrodynamic theories and S-duality,” JHEP, 04, 187, 24 pp. (2021); arXiv: 2012.13636.

    Article  ADS  Google Scholar 

  36. L. Santilli, R. J. Szabo, and M. Tierz, “\(T\overline T\)-deformation of \(q\)-Yang–Mills theory,” JHEP, 11, 086, 45 pp. (2020); arXiv: 2009.00657.

    Article  ADS  MATH  Google Scholar 

  37. A. Gorsky, D. Pavshinkin, and A. Tyutyakina, “\(T\overline T\)-deformed 2D Yang–Mills at large \(N\): collective field theory and phase transitions,” JHEP, 03, 142, 21 pp. (2021); arXiv: 2012.09467.

    Article  ADS  Google Scholar 

  38. G. Arutyunov, “Lectures on integrable systems,” PoS (Regio2020), 394, 001, 76 pp. (2021).

    Google Scholar 

  39. A. P. Polychronakos, “Physics and mathematics of Calogero particles,” J. Phys. A: Math. Gen., 39, 12793–12845 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. J. Kruthoff and J. Parrikar, “On the flow of states under \(T\overline T\),” arXiv: 2006.03054.

  41. S. Cordes, G. Moore, and S. Ramgoolam, “Lectures on 2D Yang–Mills theory, equivariant cohomology and topological field theories,” Nucl. Phys. B Proc. Suppl., 41, 184–244 (1995); arXiv: hep-th/9411210.

    Article  ADS  MATH  Google Scholar 

  42. S. de Haro and M. Tierz, “Brownian motion, Chern–Simons theory, and 2d Yang–Mills,” Phys. Lett. B, 601, 201–208 (2004); arXiv: hep-th/0406093.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. P. J. Forrester, S. N. Majumdar, and G. Schehr, “Non-intersecting Brownian walkers and Yang– Mills theory on the sphere,” Nucl. Phys. B, 844, 500–526 (2011); Erratum, 857 (2012), pp. 424–427; arXiv: 1009.2362.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. G. Schehr, S. N. Majumdar, A. Comtet, and P. J. Forrester, “Reunion probability of \(N\) vicious walkers: Typical and large fluctuations for large \(N\),” J. Stat. Phys., 150, 491–530 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. A. Gorsky, A. Milekhin, and S. Nechaev, “Two faces of Douglas–Kazakov transition: From Yang–Mills theory to random walks and beyond,” Nucl. Phys. B, 950, 114849, 23 pp. (2020); arXiv: 1604.06381.

    Article  MathSciNet  MATH  Google Scholar 

  46. D. J. Gross and W. Taylor IV, “Two-dimensional QCD is a string theory,” Nucl. Phys. B, 400, 181–208 (1993); arXiv: hep-th/9301068.

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to A. S. Gorsky for inspiring discussions and collaborations on related projects.

Funding

This work was supported by the BASIS Foundation grant No. 20-1-1-23-1 (Sections 1–3) and the Russian Science Foundation grant No. 22-72-10122, https://rscf.ru/en/project/22-72-10122/ (Sections 4–6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Pavshinkin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 358–377 https://doi.org/10.4213/tmf10537.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavshinkin, D.V. \(T\overline T\) deformation of the Calogero–Sutherland model via dimensional reduction. Theor Math Phys 217, 1726–1742 (2023). https://doi.org/10.1134/S0040577923110089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923110089

Keywords

Navigation