Skip to main content

Advertisement

Log in

Heterogeneous photocatalytic degradation of antiviral drug didanosine mediated by rose bengal and TiO2 nanoparticles

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

There is a great concern among the researcher to remove the problem of the persistent organic pollutants in wastewater. Pharmaceutical agrochemical and personal care products are generally considered Persistent organic pollutants. Therefore, it is a matter of concern to develop new techniques how to remove these pollutants safely at low cost. This study mainly focuses on the commonly used antiviral drug didanosine and one most commonly used dye rose bengal. In this study, an organic dye rose bengal and TiO2 nanoparticles have been used in combination with UV light to achieve the photodegradation of selected pharmaceutical products and the dye was also degraded by using TiO2 Nanoparticles. The formation of three oxidation products was detected by using a very popular separation technique thin layer and column chromatography. The isolated photoproduct was characterized by using advanced characterization techniques like FTIR (Fourier transform infrared spectroscopy), UV Spectroscopy, and Proton and 13C NMR (Nuclear Magnetic Resonance spectroscopy). The role of singlet oxygen as an active species in this reaction was confirmed by using D2O as a reaction medium. The role of singlet oxygen in this photochemical reaction was also established by the addition of sodium azide. The TiO2 nanophotocatalyst efficiently degrade the didanosine and rose bengal in the presence of the UV light. In the TiO2-induced photocatalytic degradation of didanosine and dyes, the hydroxyl and superoxide radical anion play a prominent role. The finding of this manuscript is very useful to develop an efficient low-cost method for the treatment of wastewater contaminated by antiviral drugs, similar pharmaceutical products and dyes. This study was also very helpful to establish a plausible mechanism behind the phototoxicity of the didanosine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11

Similar content being viewed by others

Data availability

Data available from the corresponding author on reasonable request.

References

  1. N. Ajoudanian, A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Process.Semicond. Process. 36, 162–169 (2015). https://doi.org/10.1016/j.mssp.2015.03.042

    Article  CAS  Google Scholar 

  2. S. Vahabirad, A. Nezamzadeh-Ejhieh, Ecotoxicol. Environ. Saf.. Environ. Saf. (2023). https://doi.org/10.1016/j.ecoenv.2023.115254

    Article  Google Scholar 

  3. J. Jun-Cheng, J. Jin, W. Wang, M. Guo, J. Yan, D. Wang, A. Srivastava, H. Kumar, M. Muddassir, Y. Pan, Coll. Surfaces A Physicochem. Eng. Aspects. (2023). https://doi.org/10.1016/j.colsurfa.2022.130475

    Article  Google Scholar 

  4. M. Nasiri-Ardali, A. Nezamzadeh-Ejhieh, Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2019.122142

    Article  Google Scholar 

  5. A. Singh, A.K. Singh, J. Liu, A. Kumar, Catal. Sci. Technol. Sci. Technol. (2021). https://doi.org/10.1039/D0CY02275F

    Article  Google Scholar 

  6. T. Tamiji, A. Nezamzadeh-Ejhieh, J. Electroanal. Chem.Electroanal. Chem. (2018). https://doi.org/10.1016/j.jelechem.2018.10.011

    Article  Google Scholar 

  7. S. Ghattavi, A. Nezamzadeh-Ejhieh, J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2020.114563

    Article  Google Scholar 

  8. A. Gupta, J. Iqbal, W. Ahmad, M.R. Zaheer, J. Taibah Univ. Sci. (2014). https://doi.org/10.1016/j.jtusci.2013.11.002

    Article  Google Scholar 

  9. W. Ahmad, Int. J. Photochem. (2014). https://doi.org/10.1155/2014/176989

    Article  Google Scholar 

  10. W. Ahmad, M.R. Zaheer, A. Gupta, J. Iqbal, J. Saudi Chem. Soc. (2016). https://doi.org/10.1016/j.jscs.2012.07.016

    Article  Google Scholar 

  11. C. Paris, S. Encinas, N. Belmadoui, M.J. Climent, M.A. Miranda, Org. Lett.Lett. (2008). https://doi.org/10.1021/ol801514v

    Article  Google Scholar 

  12. Y. Oba, Y. Takano, Y. Furukawa, T. Koga, D.P. Glavin, J.P. Dworkin, H. Naraoka, Nat. Commun.Commun. (2008). https://doi.org/10.1038/s41467-022-29612-x

    Article  Google Scholar 

  13. J. Dougal, H. Ritson, W. Mikolaj, D. Andrew, D. Bond, J. Am. Chem. Soc. (2022). https://doi.org/10.1021/jacs.2c07774

    Article  Google Scholar 

  14. S. Ranjan, Z.R. Todd, P.B. Rimmer, D.D. Sasselov, A.R. Babbin, Geochem. Geophys. Geosyst.. Geophys. Geosyst. (2019). https://doi.org/10.1029/2018GC008082

    Article  Google Scholar 

  15. S.C. Kim, D.K. O’Flaherty, L. Zhou, V.S. Lelyveld, J.W. Szostak, Proc. Natl. Acad. Sci. U. S. A. 115, 13318–13323 (2018). https://doi.org/10.1073/pnas.1814367115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J.D. Toner, D.C. Catling, Proc. Natl. Acad. Sci. U. S. A. 117, 883–888 (2020). https://doi.org/10.1073/pnas.1916109117

    Article  CAS  PubMed  Google Scholar 

  17. M.S. Baptista, J. Cadet, P.D. Mascio, A.A. Ghogare, A. Greer, Photochem. Photobiol.. Photobiol. 93, 912–919 (2017)

    Article  CAS  Google Scholar 

  18. B.Q. Spring, I. Rizvi, N. Xu, T. Hasan, Photochem. Photobiol. Sci.. Photobiol. Sci. 14, 1476–1491 (2015)

    Article  CAS  Google Scholar 

  19. J.D. Toner, D.C. Catling, Geochim. Cosmochim. Acta. Cosmochim. Acta. 260, 124–132 (2019). https://doi.org/10.1016/j.gca.2019.06.031

    Article  CAS  Google Scholar 

  20. S.J. Roberts, R. Szabla, Z.R. Todd, S. Stairs, D.-K. Bučar, J. Šponer, D. Sasselov, M.W. Powner, Nat. Commun.Commun. 9, 4073–4082 (2018). https://doi.org/10.1038/s41467-018-06374-z

    Article  CAS  Google Scholar 

  21. S. Ranjan, Z.R. Todd, J.D. Sutherland, D.D. Sasselov, Astrobiology 18, 1023–1040 (2018). https://doi.org/10.1089/ast.2017.1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. J. Trawiński, R. Skibiński, Environ. Sci. Pollut. Res. Int.Pollut. Res. Int. 24(2), 1152–1199 (2017)

    Article  Google Scholar 

  23. W. Ahmad, K.K. Jaiswal, S. Soni, Inorganic Nano-Metal Chem. 50(10), 1032–1038 (2020)

    Article  CAS  Google Scholar 

  24. J. Wang, R. Zhuan, Sci. Total. Environ. 701, 135023 (2020). https://doi.org/10.1016/jscitotenv.2019.135023

    Article  CAS  PubMed  Google Scholar 

  25. P. Severinoa, H. Silvac, E.B. Soutod, M.H. Santanaa, C. T. Dalla Costa. JPA 2, 29–34 (2012). https://doi.org/10.1016/j.jpha.2011.10.006

    Article  CAS  Google Scholar 

  26. L.S. Velasque, R.C.E. Estrela, G. Suarez-Kurtz, C.J. Struchiner, Braz. J. Med. Biol. Res. 40, 97–104 (2007). https://doi.org/10.1590/S0100-879X2006005000048

    Article  CAS  PubMed  Google Scholar 

  27. C. McLaren, R. Datema, C.A. Knupp, R.A. Buroker, Antiviral Chem. Chemother.Chemother. 2, 321–328 (1991)

    Article  CAS  Google Scholar 

  28. J. Xu, D.J. Ritson, S. Ranjan, Z.R. Todd, D.D. Sasselov, J. Sutherland, Chem. Commun.Commun. 54, 5566–5569 (2018). https://doi.org/10.1039/C8CC01499J

    Article  CAS  Google Scholar 

  29. S.A. Mirsalari, A. Nezamzadeh-Ejhieh, A.R. Massah, Environ. Sci. Pollut. Res. Int.Pollut. Res. Int. 29, 33013–33032 (2022). https://doi.org/10.1007/s11356-021-17569-1

    Article  CAS  Google Scholar 

  30. W. Ahmad, K.K. Jaiswal, A. Bajetha, N. Naresh, R. Verma, I. Banerjee, Inorganic Nano-Metal Chem. (2023). https://doi.org/10.1080/24701556.2023.2184385

    Article  Google Scholar 

  31. W. Ahmad, A. Singh, K.K. Jaiswal, P. Gupta, J. Inorg. Organomet. Polym. Mater.Inorg. Organomet. Polym Mater. 31, 614–623 (2021). https://doi.org/10.1007/s10904-020-01703-6

    Article  CAS  Google Scholar 

  32. S. Subhapriya, P. Gomathipriya, Microb. Pathog.. Pathog. 116, 215–220 (2018). https://doi.org/10.1016/j.micpath.2018.01.027

    Article  CAS  Google Scholar 

  33. W. Ahmad, N. Kaur, H.C. Joshi, Mater. Today: Proc. (2022). https://doi.org/10.1016/j.matpr.2022.09.075

    Article  PubMed  Google Scholar 

  34. M. Malakootian, A. Nasiri, M.A. Gharaghani, Chem. Eng. Commun.Commun. (2019). https://doi.org/10.1080/00986445.2019.1573168

    Article  Google Scholar 

  35. W. Ahmad, S.C. Bhatt, N. Kaur, Vietnam J. Chem. 61, 445–454 (2023). https://doi.org/10.1002/vjch.202200156

    Article  CAS  Google Scholar 

Download references

Funding

Not any funding received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waseem Ahmad.

Ethics declarations

Conflict of interest

No competing interest in this work.

Ethical approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, W., Kumar, S. & Verma, M. Heterogeneous photocatalytic degradation of antiviral drug didanosine mediated by rose bengal and TiO2 nanoparticles. ANAL. SCI. 40, 175–184 (2024). https://doi.org/10.1007/s44211-023-00446-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00446-x

Keywords

Navigation