Skip to main content
Log in

An improved updated Lagrangian SPH method for structural modelling

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a set of novel refined schemes to enhance the accuracy and stability of the updated Lagrangian SPH (ULSPH) for structural modelling. The original ULSPH structure model was first proposed by Gray et al. (Comput Methods Appl Mech Eng 190:6641–6662, 2001) and has been utilised for a wide range of structural analyses including metal, soil, rubber, ice, etc., although the model often faces several drawbacks including unphysical numerical damping, high-frequency noise in reproduced stress fields, presence of several artificial terms requiring ad hoc tunings and numerical instability in the presence of tensile stresses. In these regards, this study presents a set of enhanced schemes corresponding to (1) consistency correction on discretisation schemes for differential operators, (2) a numerical diffusive term incorporated in the continuity or the density rate equation, (3) tuning-free stabilising term based on Riemann solution and (4) careful control/switch of stress divergence differential operator model under tensile stresses. Qualitative/quantitative validations are conducted through several well-known benchmark tests.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190:6641–6662

    Article  MATH  Google Scholar 

  2. Khayyer A, Gotoh H, Shimizu Y (2022) On systematic development of FSI solvers in the context of particle methods. J Hydrodyn 34:395–407

    Article  Google Scholar 

  3. Luo M, Khayyer A, Lin PZ (2021) Particle methods in ocean and coastal engineering. Appl Ocean Res 114:102734

    Article  Google Scholar 

  4. Vacondio R, Altomare C, De Leffe M, Hu XY, Le Touze D, Lind S, Marongiu JC, Marrone S, Rogers BD, Souto-Iglesias A (2021) Grand challenges for smoothed particle hydrodynamics numerical schemes. Comput Part Mech 8:575–588

    Article  Google Scholar 

  5. Ye T, Pan DY, Huang C, Liu MB (2019) Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications. Phys Fluids 31:011301

    Article  Google Scholar 

  6. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  7. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  8. Monaghan JJ (1994) Simulating free-surface flows with SPH. J Comput Phys 110:399–406

    Article  MATH  Google Scholar 

  9. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574

    Article  Google Scholar 

  10. Monaghan JJ, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys 52:374–389

    Article  MATH  Google Scholar 

  11. Antuono M, Colagrossi A, Marrone S, Molteni D (2010) Free-surface flows solved by means of SPH schemes with numerical diffusive terms. Comput Phys Commun 181:532–549

    Article  MathSciNet  MATH  Google Scholar 

  12. Marrone S, Antuono M, Colagrossi A, Colicchio G, Le Touze D, Graziani G (2011) delta-SPH model for simulating violent impact flows. Comput Methods Appl Mech Eng 200:1526–1542

    Article  MATH  Google Scholar 

  13. Rider WJ (1994) A review of approximate Riemann solvers with Godunov method in Lagrangian coordinates. Comput Fluids 23:397–413

    Article  MathSciNet  MATH  Google Scholar 

  14. Inutsuka S (2002) Reformulation of smoothed particle hydrodynamics with Riemann solver. J Comput Phys 179:238–267

    Article  MATH  Google Scholar 

  15. Bonet J, Kulasegaram S (2001) Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods. Int J Numer Methods Eng 52:1203–1220

    Article  MATH  Google Scholar 

  16. Belytschko T, Xiao SP (2002) Stability analysis of particle methods with corrected derivatives. Comput Math Appl 43:329–350

    Article  MathSciNet  MATH  Google Scholar 

  17. Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159:290–311

    Article  MATH  Google Scholar 

  18. Sun PN, Colagrossi A, Marrone S, Antuono M, Zhang AM (2018) Multi-resolution delta-plus-SPH with tensile instability control: towards high Reynolds number flows. Comput Phys Commun 224:63–80

    Article  MathSciNet  MATH  Google Scholar 

  19. Monaghan JJ (1989) On the problem of penetration in particle methods. J Comput Phys 82:1–15

    Article  MATH  Google Scholar 

  20. Lind SJ, Xu R, Stansby PK, Rogers BD (2012) Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J Comput Phys 231:1499–1523

    Article  MathSciNet  MATH  Google Scholar 

  21. Khayyer A, Shimizu Y, Gotoh T, Gotoh H (2023) Enhanced resolution of the continuity equation in explicit weakly compressible SPH simulations of incompressible free-surface fluid flows. Appl Math Model 116:84–121

    Article  MathSciNet  MATH  Google Scholar 

  22. Meng ZF, Wang PP, Zhang AM, Ming FR, Sun PN (2020) A multiphase SPH model based on Roe’s approximate Riemann solver for hydraulic flows with complex interface. Comput Methods Appl Mech Eng 365:112999

    Article  MathSciNet  MATH  Google Scholar 

  23. Bui HH, Nguyen GD (2021) Smoothed particle hydrodynamics (SPH) and its applications in geomechanics: from solid fracture to granular behaviour and multiphase flows in porous media. Comput Geotech 138:104315

    Article  Google Scholar 

  24. Zhang C, Zhu YJ, Wu D, Adams NA, Hu XY (2022) Smoothed particle hydrodynamics: methodology development and recent achievement. J Hydrodyn 34:767–805

    Article  Google Scholar 

  25. Lyu HG, Sun PN, Huang XT, Peng YX, Liu NN, Zhang X, Xu Y, Zhang AM (2023) SPHydro: promoting smoothed particle hydrodynamics method toward extensive applications in ocean engineering. Phys Fluids 35:017116

    Article  Google Scholar 

  26. Gotoh H, Khayyer A, Shimizu Y (2021) Entirely Lagrangian meshfree computational methods for hydroelastic fluid–structure interactions in ocean engineering-reliability, adaptivity and generality. Appl Ocean Res 115:102822

    Article  Google Scholar 

  27. Oger G, Guilcher PM, Jacquin E, Brosset L, Deuff JB, Le Touze D (2010) Simulations of hydro-elastic impacts using a parallel SPH model. Int J Offshore Polar 20:181–189

    Google Scholar 

  28. Zhang NB, Zheng X, Ma QW (2019) Study on wave-induced kinematic responses and flexures of ice floe by smoothed particle hydrodynamics. Comput Fluids 189:46–59

    Article  MathSciNet  MATH  Google Scholar 

  29. Islam MRI, Bansal A, Peng C (2020) Numerical simulation of metal machining process with Eulerian and total Lagrangian SPH. Eng Anal Bound Elem 117:269–283

    Article  MathSciNet  MATH  Google Scholar 

  30. Tran HT, Wang YN, Nguyen GD, Kodikara J, Sanchez M, Bui H (2019) Modelling 3D desiccation cracking in clayey soils using a size-dependent SPH computational approach. Comput Geotech 116:103209

    Article  Google Scholar 

  31. Zhang N, Ma Q, Zheng X, Yan S (2023) A two-way coupling method for simulating wave-induced breakup of ice floes based on SPH. J Comput Phys 488:112185

    Article  MathSciNet  MATH  Google Scholar 

  32. Xia C, Shi Z, Zheng H, Wu X (2023) Kernel broken smooth particle hydrodynamics method for crack propagation simulation applied in layered rock cells and tunnels. Undergr Space 10:55–75

    Article  Google Scholar 

  33. Jacob B, Drawert B, Yi T-M, Petzold L (2021) An arbitrary Lagrangian Eulerian smoothed particle hydrodynamics (ALE-SPH) method with a boundary volume fraction formulation for fluid–structure interaction. Eng Anal Bound Elem 128:274–289

    Article  MathSciNet  MATH  Google Scholar 

  34. Dong X, Huang X, Liu J (2019) Modeling and simulation of droplet impact on elastic beams based on SPH. Eur J Mech A Solids 75:237–257

    Article  MathSciNet  MATH  Google Scholar 

  35. Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid–structure interaction by SPH. Comput Struct 85:879–890

    Article  Google Scholar 

  36. Vignjevic R, Campbell J, Libersky L (2000) A treatment of zero-energy modes in the smoothed particle hydrodynamics method. Comput Methods Appl Mech Eng 184:67–85

    Article  MathSciNet  MATH  Google Scholar 

  37. Xiao SP, Belytschko T (2005) Material stability analysis of particle methods. Adv Comput Math 23:171–190

    Article  MathSciNet  MATH  Google Scholar 

  38. Belytschko T, Guo Y, Liu WK, Xiao SP (2000) A unified stability analysis of meshless particle methods. Int J Numer Methods Eng 48:1359–1400

    Article  MathSciNet  MATH  Google Scholar 

  39. Khayyer A, Shimizu Y, Gotoh H, Nagashima K (2021) A coupled incompressible SPH-Hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures. Appl Math Model 94:242–271

    Article  MathSciNet  MATH  Google Scholar 

  40. Lee CH, Gil AJ, Ghavamian A, Bonet J (2019) A total Lagrangian upwind smooth particle hydrodynamics algorithm for large strain explicit solid dynamics. Comput Methods Appl Mech Eng 344:209–250

    Article  MathSciNet  MATH  Google Scholar 

  41. De Campos PRR, Gil AJ, Lee CH, Giacomini M, Bonet J (2022) A New updated reference Lagrangian smooth particle hydrodynamics algorithm for isothermal elasticity and elasto-plasticity. Comput Methods Appl Mech Eng 392:114680

    Article  MathSciNet  MATH  Google Scholar 

  42. Lee CH, De Campos PRR, Gil AJ, Giacomini M, Bonet J (2023) An entropy-stable updated reference Lagrangian smoothed particle hydrodynamics algorithm for thermo-elasticity and thermo-visco-plasticity. Comput Part Mech. https://doi.org/10.1007/s40571-023-00564-3

    Article  Google Scholar 

  43. Bonet J, Lok TSL (1999) Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput Methods Appl Mech Eng 180:97–115

    Article  MathSciNet  MATH  Google Scholar 

  44. Randles PW, Libersky LD (2000) Normalized SPH with stress points. Int J Numer Methods Eng 48:1445–1462

    Article  MATH  Google Scholar 

  45. Dyka CT, Ingel RP (1995) An approach for tension instability in smoothed particle hydrodynamics (SPH). Comput Struct 57:573–580

    Article  MATH  Google Scholar 

  46. Lee CH, Gil AJ, Greto G, Kulasegaram S, Bonet J (2016) A new Jameson–Schmidt–Turkel smooth particle hydrodynamics algorithm for large strain explicit fast dynamics. Comput Methods Appl Mech Eng 311:71–111

    Article  MathSciNet  MATH  Google Scholar 

  47. Lee CH, Gil AJ, Hassan OI, Bonet J, Kulasegaram S (2017) A variationally consistent streamline upwind Petrov–Galerkin smooth particle hydrodynamics algorithm for large strain solid dynamics. Comput Methods Appl Mech Eng 318:514–536

    Article  MathSciNet  MATH  Google Scholar 

  48. Ghavamian A, Lee CH, Gil AJ, Bonet J, Heuze T, Stainier L (2021) An entropy-stable smooth particle hydrodynamics algorithm for large strain thermo-elasticity. Comput Methods Appl Mech Eng 379:113736

    Article  MathSciNet  MATH  Google Scholar 

  49. Lee CH, Gil AJ, Bonet J (2013) Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics. Comput Struct 118:13–38

    Article  Google Scholar 

  50. Meng ZF, Zhang AM, Yan JL, Wang PP, Khayyer A (2022) A hydroelastic fluid–structure interaction solver based on the Riemann-SPH method. Comput Methods Appl Mech Eng 390:114522

    Article  MathSciNet  MATH  Google Scholar 

  51. Deuff JB (2007) Extrapolation au réel des mesures de pression obtenues sur des cuves modèle réduit. In: Ecole Centrale de Nantes, France

  52. Doyle JF (1989) Wave propagation in structures: an FFT-based spectral analysis methodology. Springer, New York

    Book  MATH  Google Scholar 

  53. Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–396

    Article  MathSciNet  MATH  Google Scholar 

  54. Michel J, Vergnaud A, Oger G, Hermange C, Le Touze D (2022) On particle shifting techniques (PSTs): analysis of existing laws and proposition of a convergent and multi-invariant law. J Comput Phys 459:110999

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang C, Hu XYY, Adams NA (2017) A generalized transport-velocity formulation for smoothed particle hydrodynamics. J Comput Phys 337:216–232

    Article  MathSciNet  MATH  Google Scholar 

  56. Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int J Numer Anal Methods 32:1537–1570

    Article  MATH  Google Scholar 

  57. Ganzenmuller GC (2015) An hourglass control algorithm for Lagrangian smooth particle hydrodynamics. Comput Methods Appl Mech Eng 286:87–106

    Article  MathSciNet  MATH  Google Scholar 

  58. Molteni D, Colagrossi A (2009) A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput Phys Commun 180:861–872

    Article  MathSciNet  MATH  Google Scholar 

  59. Hammani I, Marrone S, Colagrossi A, Oger G, Le Touze D (2020) Detailed study on the extension of the delta-SPH model to multi-phase flow. Comput Methods Appl Mech Eng 368:113189

    Article  MATH  Google Scholar 

  60. Khayyer A, Shimizu Y, Lee CH, Kinuta K, Gil A, Gotoh H, Bonet J (2022) Updated Lagrangian SPH structure model enhanced through incorporation of δ-SPH density diffusion term. In: SPHERIC 2022 international workshop. CATANIA, ITALY, pp 154–161

  61. Green MD, Vacondio R, Peiro J (2019) A smoothed particle hydrodynamics numerical scheme with a consistent diffusion term for the continuity equation. Comput Fluids 179:632–644

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhang C, Xiang GM, Wang B, Hu XY, Adams NA (2019) A weakly compressible SPH method with WENO reconstruction. J Comput Phys 392:1–18

    Article  MathSciNet  MATH  Google Scholar 

  63. Colagrossi A, Antuono M, Le Touzé D (2009) Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model. Phys Rev E 79:056701

    Article  Google Scholar 

  64. Marrone S, Colagrossi A, Le Touze D, Graziani G (2010) Fast free-surface detection and level-set function definition in SPH solvers. J Comput Phys 229:3652–3663

    Article  MATH  Google Scholar 

  65. Shimizu Y, Khayyer A, Gotoh H (2022) An implicit SPH-based structure model for accurate fluid–structure interaction simulations with hourglass control scheme. Eur J Mech B Fluid 96:122–145

    Article  MathSciNet  MATH  Google Scholar 

  66. Wu D, Zhang C, Tang XJ, Hu XY (2023) An essentially non-hourglass formulation for total Lagrangian smoothed particle hydrodynamics. Comput Methods Appl Mech Eng 407:115915

    Article  MathSciNet  MATH  Google Scholar 

  67. Rafiee A, Thiagarajan KP (2009) An SPH projection method for simulating fluid–hypoelastic structure interaction. Comput Methods Appl Mech Eng 198:2785–2795

    Article  MATH  Google Scholar 

  68. Aguirre M, Gil AJ, Bonet J, Lee CH (2015) An upwind vertex centred finite volume solver for Lagrangian solid dynamics. J Comput Phys 300:387–422

    Article  MathSciNet  MATH  Google Scholar 

  69. Hassan OI, Ghavamian A, Lee CH, Gil AJ, Bonet J, Auricchio F (2019) An upwind vertex centred finite volume algorithm for nearly and truly incompressible explicit fast solid dynamic applications: total and updated Lagrangian formulations. J Comput Phys X 3:100025

    MathSciNet  Google Scholar 

  70. Campbell J, Vignjevic R, Libersky L (2000) A contact algorithm for smoothed particle hydrodynamics. Comput Methods Appl Mech Eng 184:49–65

    Article  MathSciNet  MATH  Google Scholar 

  71. Runcie CJ, Lee CH, Haider J, Gil AJ, Bonet J (2022) An acoustic Riemann solver for large strain computational contact dynamics. Int J Numer Methods Eng 123:5700–5748

    Article  MathSciNet  MATH  Google Scholar 

  72. Khayyer A, Shimizu Y, Gotoh H, Hattori S (2022) A 3D SPH-based entirely Lagrangian meshfree hydroelastic FSI solver for anisotropic composite structures. Appl Math Model 112:560–613

    Article  MathSciNet  MATH  Google Scholar 

  73. Antuono M, Colagrossi A, Marrone S (2012) Numerical diffusive terms in weakly-compressible SPH schemes. Comput Phys Commun 183:2570–2580

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study was supported by JSPS (Japan Society for the Promotion of Science) KAKENHI Grants Numbers JP21H01433, JP18K04368, JP21K14250 and JP22H01599. Antonio Gil and Chun Hean Lee would like to acknowledge the financial support received through the project Marie Sklodowska-Curie ITN-EJD ProTechTion, funded by the European Union Horizon 2020 research and innovation programme with Grant Number 764636. The first author acknowledges the contribution of Mr. Kazuhiro Kinuta and Mr. Kazunori Yunoki, students of Applied Mechanics Laboratory, Kyoto University, in conducting several preliminary simulations corresponding to this study back in 2021 and 2022, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Khayyer.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Theoretical solution of elastic wave propagation (Sect. 4.5)

In this appendix, the analytical solution of 1D elastic wave propagation corresponding to the benchmark test in Sect. 4.5 is derived based on the elementary rod theory [52]. In this theory, the rod is assumed to be long and slender so that the lateral contraction could be negligibly small.

The equation of motion is obtained as follows. Let us consider an element inside a rod. Let q(x,t) be the external force per unit volume, u(x,t) be the displacement in x-direction, A be the area of cross section, Δx be the length of the element in x-direction as an infinitesimal value, ρ be the density of the rod, and F be the force acting on the face of cross section, as shown in Fig. 

Fig. 34
figure 34

An element of a rod with subjected loads

34.

Considering the force balance for an element of the rod as:

$$ \left( {\rho A\Delta x} \right)\frac{{\partial^{2} u}}{{\partial t^{2} }} = - F + \left( {F + \frac{\partial F}{{\partial x}}\Delta x} \right) + qA\Delta x $$
(A.1)

where ρA denotes the mass per unit length of the rod. The above momentum equation can be expressed as:

$$ \frac{\partial F}{{\partial x}} = \rho A\frac{{\partial^{2} u}}{{\partial t^{2} }} - qA $$
(A.2)

The relationship between the strain ε and displacement u can be written as:

$$ \varepsilon = \frac{\partial u}{{\partial x}} $$
(A.3)

The Hooke’s law in one-dimensional form can be described as:

$$ \sigma = \frac{F}{A} = E\varepsilon $$
(A.4)

where \(\sigma\) stands for stress. Substituting Eqs. (A.3) and (A.4) into Eq. (A.2), we obtain Eq. (A.5) as:

$$ \frac{\partial }{\partial x}\left( {EA\frac{\partial u}{{\partial x}}} \right) = \rho A\frac{{\partial^{2} u}}{{\partial t^{2} }} - qA $$
(A.5)

If the external force q(x,t) does not exist and the rod is a homogeneous material, we can obtain the below wave equation:

$$ \frac{{\partial^{2} u}}{{\partial t^{2} }} - C^{2} \frac{{\partial^{2} u}}{{\partial x^{2} }} = 0;\quad C = \sqrt {\frac{E}{\rho }} $$
(A.6)

where C represents the speed of sound corresponding to the velocity of the propagating wave. We can solve this wave equation under the provided initial conditions and boundary conditions.

For a composite rod, i.e. a rod consisting of physically different materials with clear phase interface, we consider general d’Alembert solution of Eq. (A.6) for each material phase. In case of the test case in Sect. 4.5, left component (phase 1: aluminium) and right component (phase 2: copper) are connected at the centre of the rod with a clear material interface. The wave reflects at the interface due to the discontinuity of materials. Considering that displacement and stress are continuous across the material interface, we can find the reflection coefficient \(A_{1}^{{{\text{ref}}}}\) and transmission coefficient \(A_{2}^{{{\text{inc}}}}\).

For phase 1, the displacement and the stress induced by the incident wave (coefficient of \(A_{1}^{{{\text{inc}}}}\)) can be written with using angular frequency ω and wave number k as:

$$ u_{1}^{{{\text{inc}}}} \left( {x,t} \right) = A_{1}^{{{\text{inc}}}} \exp \left( {i\left( {\omega t - k_{1} x} \right)} \right) $$
(A.7)
$$ \sigma_{1}^{{{\text{inc}}}} \left( {x,t} \right) = E_{1}^{{}} \frac{{\partial u_{1}^{{{\text{inc}}}} }}{\partial x} = - A_{1}^{{{\text{inc}}}} E_{1}^{{}} k_{1}^{{}} \exp \left( {i\left( {\omega t - k_{1} x} \right)} \right) $$
(A.8)

The displacement and the stress occurred by reflection wave are obtained as:

$$ u_{1}^{{{\text{ref}}}} \left( {x,t} \right) = A_{1}^{{{\text{ref}}}} \exp \left( {i\left( {\omega t + k_{1} x} \right)} \right) $$
(A.9)
$$ \sigma_{1}^{{{\text{ref}}}} \left( {x,t} \right) = E_{1}^{{}} \frac{{\partial u_{1}^{{{\text{ref}}}} }}{\partial x} = A_{1}^{{{\text{ref}}}} E_{1}^{{}} k_{1}^{{}} \exp \left( {i\left( {\omega t + k_{1} x} \right)} \right) $$
(A.10)

For phase 2, the displacement and the stress can be calculated as:

$$ u_{2}^{{{\text{inc}}}} \left( {x,t} \right) = A_{2}^{{{\text{inc}}}} \exp \left( {i\left( {\omega t - k_{2} x} \right)} \right) $$
(A.11)
$$ \sigma_{2}^{{{\text{inc}}}} \left( {x,t} \right) = E_{2}^{{}} \frac{{\partial u_{2}^{{{\text{inc}}}} }}{\partial x} = - A_{2}^{{{\text{inc}}}} E_{2}^{{}} k_{2}^{{}} \exp \left( {i\left( {\omega t - k_{2} x} \right)} \right) $$
(A.12)

Since the displacement and stress are continuous across the material interface, the following relationship would hold:

$$ A_{1}^{{{\text{inc}}}} + A_{1}^{{{\text{ref}}}} = A_{2}^{{{\text{inc}}}} $$
(A.13)
$$ - A_{1}^{{{\text{inc}}}} E_{1}^{{}} k_{1}^{{}} + A_{1}^{{{\text{ref}}}} E_{1}^{{}} k_{1}^{{}} = - A_{2}^{{{\text{inc}}}} E_{2}^{{}} k_{2}^{{}} $$
(A.14)

Thus, the reflection coefficient and transmission coefficient can be obtained as:

$$ A_{1}^{{{\text{ref}}}} = A_{1}^{{{\text{inc}}}} \frac{{E_{1}^{{}} k_{1}^{{}} - E_{2}^{{}} k_{2}^{{}} }}{{E_{1}^{{}} k_{1}^{{}} + E_{2}^{{}} k_{2}^{{}} }} $$
(A.15)
$$ A_{2}^{{{\text{inc}}}} = 2A_{1}^{{{\text{inc}}}} \frac{{E_{1}^{{}} k_{1}^{{}} }}{{E_{1}^{{}} k_{1}^{{}} + E_{2}^{{}} k_{2}^{{}} }} $$
(A.16)

Since the components would have difference in both Young’s modulus and density, Eqs. (A.15) and (A.16) will be further formulated to the form including density. We now consider the continuity of angular frequency across material interface as:

$$ \omega = k_{1}^{{}} C_{1}^{{}} = k_{2}^{{}} C_{2}^{{}} $$
(A.17)

We obtain the relationship of wave numbers between two phases as:

$$ \frac{{k_{1}^{{}} }}{{k_{2}^{{}} }} = \frac{{C_{2}^{{}} }}{{C_{1}^{{}} }} = \sqrt {\frac{{E_{2}^{{}} \rho_{1}^{{}} }}{{E_{1}^{{}} \rho_{2}^{{}} }}} $$
(A.18)

Equation (A.15) can be rewritten by substituting Eq. (A.18) as:

$$ \begin{aligned} A_{1}^{{{\text{ref}}}} & = A_{1}^{{{\text{inc}}}} \frac{{E_{1}^{{}} k_{1}^{{}} - E_{2}^{{}} k_{2}^{{}} }}{{E_{1}^{{}} k_{1}^{{}} + E_{2}^{{}} k_{2}^{{}} }} \\ & = A_{1}^{{{\text{inc}}}} \frac{{1 - \frac{{E_{2}^{{}} k_{2}^{{}} }}{{E_{1}^{{}} k_{1}^{{}} }}}}{{1 + \frac{{E_{2}^{{}} k_{2}^{{}} }}{{E_{1}^{{}} k_{1}^{{}} }}}} \\ & = A_{1}^{{{\text{inc}}}} \frac{{1 - \sqrt {\frac{{E_{2}^{{}} \rho_{2}^{{}} }}{{E_{1}^{{}} \rho_{1}^{{}} }}} }}{{1 + \sqrt {\frac{{E_{2}^{{}} \rho_{2}^{{}} }}{{E_{1}^{{}} \rho_{1}^{{}} }}} }} \\ & = A_{1}^{{{\text{inc}}}} \frac{{1 - \alpha_{r} }}{{1 + \alpha_{r} }} \\ \end{aligned} $$
(A.19)
$$ \alpha_{r} = \sqrt {\frac{{E_{2}^{{}} \rho_{2}^{{}} }}{{E_{1}^{{}} \rho_{1}^{{}} }}} $$
(A.20)

Substituting Eq. (A.19) into Eq. (A.13), we can obtain the amplitude of the transmission wave as:

$$ \begin{aligned} A_{2}^{{{\text{inc}}}} & = A_{1}^{{{\text{inc}}}} + A_{1}^{{{\text{ref}}}} \\ & = A_{1}^{{{\text{inc}}}} + A_{1}^{{{\text{inc}}}} \frac{{1 - \alpha_{r} }}{{1 + \alpha_{r} }} \\ & = A_{1}^{{{\text{inc}}}} \frac{2}{{1 + \alpha_{r} }} \\ \end{aligned} $$
(A.21)

Appendix B. Discussion on the similarity among Riemann diffusive term, artificial viscosity and δ-SPH

The continuity equation including the δ or the density diffusive term can be written as (also discussed in Sect. 3.2):

$$ \frac{{{\text{D}}\rho_{i}^{{}} }}{{{\text{D}}t}} = - \rho_{i}^{{}} \sum\limits_{j} {{\varvec{u}}_{ij}^{{}} \cdot \nabla_{i}^{{}} w_{ij} V_{j} } + D_{i} $$
(B.1)
$$ D_{i} = \delta hc_{0}^{{}} \sum\limits_{j} {\psi_{ij} \frac{{{\varvec{r}}_{ij} \cdot \nabla_{i}^{{}} w_{ij} }}{{\left| {{\varvec{r}}_{ij} } \right|^{2} }}V_{j} } $$
(B.2)
$$ \psi_{ij}^{{{\text{0th}}}} = 2\rho_{ij} $$
(B.3)
$$ \psi_{ij}^{{{\text{1st}}}} = 2\rho_{ij} - \left( {\left\langle {\nabla \rho } \right\rangle_{i} + \left\langle {\nabla \rho } \right\rangle_{j} } \right) \cdot {\varvec{r}}_{ij} $$
(B.4)

Equations (B.3) and (B.4) correspond to zeroth- and first-order corrected functions (Refs. [12, 58], respectively).

In Riemann SPH, for the case of linear reconstruction of variables, the continuity equation is written as:

$$ \frac{{{\text{D}}\rho_{i}^{{}} }}{{{\text{D}}t}} = - 2\rho_{i}^{{}} \sum\limits_{j} {\left( {{\varvec{u}}_{{}}^{*} - {\varvec{u}}_{i}^{{}} } \right) \cdot \nabla_{i}^{{}} w_{ij} V_{j} } $$
(B.5)
$$ {\varvec{u}}_{{}}^{*} = u_{{}}^{*} \frac{{{\varvec{r}}_{ij} }}{{\left| {{\varvec{r}}_{ij} } \right|}} + \left\{ {\frac{{{\varvec{u}}_{i}^{{}} + {\varvec{u}}_{j}^{{}} }}{2} - \frac{{u_{i}^{{}} + u_{j}^{{}} }}{2}\frac{{{\varvec{r}}_{ij} }}{{\left| {{\varvec{r}}_{ij} } \right|}}} \right\} $$
(B.6)
$$ u_{{}}^{*} = \frac{1}{2}\left[ {u_{i} + u_{j} + \frac{1}{{C_{ij} }}\left( {p_{i} - p_{j} } \right)} \right] $$
(B.7)
$$ u_{i}^{{}} = {\varvec{u}}_{i}^{{}} \cdot \frac{{{\varvec{r}}_{ij} }}{{\left| {{\varvec{r}}_{ij} } \right|}}_{{}} ;\quad u_{j}^{{}} = {\varvec{u}}_{j}^{{}} \cdot \frac{{{\varvec{r}}_{ij} }}{{\left| {{\varvec{r}}_{ij} } \right|}} $$
(B.8)
$$ C_{ij} = \frac{{c_{i} \rho_{i} \sqrt {\rho_{i} } + c_{j} \rho_{j} \sqrt {\rho_{j} } }}{{\sqrt {\rho_{i} } + \sqrt {\rho_{j} } }} $$
(B.9)

From the equation of state, we have:

$$ p_{i}^{{}} = c_{0}^{2} \left( {\rho_{i}^{{}} - \rho_{0}^{{}} } \right) $$
(B.10)

Reformulating equations by substituting Eqs. (B.6) to (B.10) into Eq. (B.5), then:

$$ \frac{{{\text{D}}\rho_{i}^{{}} }}{{{\text{D}}t}} = - \rho_{i}^{{}} \sum\limits_{j} {{\varvec{u}}_{ij}^{{}} \cdot \nabla_{i}^{{}} w_{ij} V_{j} } + \rho_{i}^{{}} \sum\limits_{j} {\frac{{c_{0}^{2} \rho_{ij} }}{{C_{ij} }}\frac{{{\varvec{r}}_{ij} }}{{\left| {{\varvec{r}}_{ij} } \right|}} \cdot \nabla_{i}^{{}} w_{ij} V_{j} } $$
(B.11)

Comparing Eqs. (B.1) and (B.11), the density diffusion by Riemann solution DR can be written as:

$$ D_{i}^{{\text{R}}} = hc_{0}^{{}} \sum\limits_{j} {\left( {\frac{{\rho_{i}^{{}} c_{0}^{{}} }}{{C_{ij} }}\frac{{\left| {{\varvec{r}}_{ij} } \right|}}{h}} \right)\psi_{ij}^{{\text{R}}} \frac{{{\varvec{r}}_{ij} \cdot \nabla_{i}^{{}} w_{ij} }}{{\left| {{\varvec{r}}_{ij} } \right|^{2} }}V_{j} } $$
(B.12)
$$ \psi_{ij}^{{\text{R}}} = 2\rho_{ij} $$
(B.13)

Therefore, the density diffusion by Riemann solution has close similarity with the δ-SPH diffusion term without a first-order correction [58].

Linear momentum equation with the artificial viscosity term can be written as:

$$ \frac{{{\text{D}}{\varvec{u}}_{i}^{{}} }}{{{\text{D}}t}} = \sum\limits_{j} {m_{j}^{{}} \left( {\frac{{{{\varvec{\sigma}}}_{j}^{{}} + {{\varvec{\sigma}}}_{i}^{{}} }}{{\rho_{i}^{{}} \rho_{j}^{{}} }}} \right) \cdot \nabla_{i}^{{}} w_{ij} } + {{\varvec{\varPi}}}_{i}^{{{\text{AV}}}} $$
(B.14)
$$ {{\varvec{\varPi}}}_{i}^{{{\text{AV}}}} = \sum\limits_{j} {m_{j}^{{}} \Pi_{ij}^{{{\text{AV}}}} \nabla_{i}^{{}} w_{ij} } $$
(B.15)
$$ \Pi_{i}^{{{\text{AV}}}} = \left\{ {\begin{array}{*{20}l} {\frac{{\alpha^{{{\text{AV}}}} hc_{ij}^{{}} }}{{\rho_{ij}^{{}} }}\frac{{{\varvec{u}}_{ij} \cdot {\varvec{r}}_{ij} }}{{\left| {{\varvec{r}}_{ij} } \right|^{2} + \left( {0.1h} \right)^{2} }}} \hfill & {\quad \left( {{\varvec{u}}_{ij} \cdot {\varvec{r}}_{ij} < 0} \right)} \hfill \\ 0 \hfill & {\quad \left( {{\varvec{u}}_{ij} \cdot {\varvec{r}}_{ij} \ge 0} \right)} \hfill \\ \end{array} } \right.;\quad \rho_{ij}^{{}} = \frac{{\rho_{i}^{{}} + \rho_{j}^{{}} }}{2},\quad c_{ij}^{{}} = \frac{{c_{i}^{{}} + c_{j}^{{}} }}{2} $$
(B.16)

In the Riemann SPH, linear momentum continuity equation is written as (see Sect. 3.3):

$$ \frac{{{\text{D}}{\varvec{u}}_{i}^{{}} }}{{{\text{D}}t}} = \sum\limits_{j} {m_{j}^{{}} \left( {\frac{{{{\varvec{\sigma}}}_{j}^{{}} + {{\varvec{\sigma}}}_{i}^{{}} }}{{\rho_{i}^{{}} \rho_{j}^{{}} }}} \right) \cdot \nabla_{i}^{{}} w_{ij} } + {{\varvec{\varPi}}}_{i}^{{\text{R}}} $$
(B.17)
$$ {{\varvec{\Pi}}}_{i}^{{\text{R}}} = \sum\limits_{j} {m_{j}^{{}} \left( {\frac{{2C_{ij} \left( {u_{j} - u_{i} } \right)}}{{\rho_{i}^{{}} \rho_{j}^{{}} }}} \right)\nabla_{i}^{{}} w_{ij} } $$
(B.18)
$$ C_{ij} = \frac{{c_{i} \rho_{i} \sqrt {\rho_{i} } + c_{j} \rho_{j} \sqrt {\rho_{j} } }}{{\sqrt {\rho_{i} } + \sqrt {\rho_{j} } }} $$
(B.19)
$$ u_{i} = {\varvec{u}}_{i} \cdot \frac{{{\varvec{r}}_{ij} }}{{\left| {{\varvec{r}}_{ij} } \right|}};\quad u_{j} = {\varvec{u}}_{j} \cdot \frac{{{\varvec{r}}_{ij} }}{{\left| {{\varvec{r}}_{ij} } \right|}} $$
(B.20)
$$ \begin{aligned}u_{i} &= \left( {{\varvec{u}}_{i} + \frac{1}{2}\left\langle {\nabla {\varvec{u}}} \right\rangle_{i}^{c} \cdot {\varvec{r}}_{ij} } \right) \cdot \frac{{{\varvec{r}}_{ij} }}{{\left| {{\varvec{r}}_{ij} } \right|}};\quad\\ u_{j} &= \left( {{\varvec{u}}_{j} - \frac{1}{2}\left\langle {\nabla {\varvec{u}}} \right\rangle_{j}^{c} \cdot {\varvec{r}}_{ij} } \right) \cdot \frac{{{\varvec{r}}_{ij} }}{{\left| {{\varvec{r}}_{ij} } \right|}} \end{aligned}$$
(B.21)

where Eqs. (B.20) and (B.21) correspond to linear and second-order constructions of variables. Here, considering linear construction of variables (Eq. B.20), since we have

$$ u_{j} - u_{i} = {\varvec{u}}_{ij} \cdot \frac{{{\varvec{r}}_{ij} }}{{\left| {{\varvec{r}}_{ij} } \right|}} $$

thus, we can reformulate Eq. (B.18) as:

$$ {{\varvec{\Pi}}}_{i}^{{\text{R}}} = \sum\limits_{j} {m_{j}^{{}} \Pi_{ij}^{{\text{R}}} \nabla_{i}^{{}} w_{ij} } $$
(B.22)
$$ \Pi_{ij}^{{\text{R}}} = \left( {\frac{{2\left| {{\varvec{r}}_{ij} } \right|C_{ij} }}{{\rho_{i}^{{}} \rho_{j}^{{}} }}} \right)\left( {\frac{{{\varvec{u}}_{ij} \cdot {\varvec{r}}_{ij} }}{{\left| {{\varvec{r}}_{ij} } \right|^{2} }}} \right) $$
(B.23)

Therefore, one can see that the AV term and the Riemann term have similarity. Indeed, Meng et al. [22] discussed this similarity and proposed a limiter function for Riemann stabilisation term in order to avoid excessive dissipation. Note that a concise summary of δ versus Riemann density diffusive terms as well as artificial viscosity versus Riemann momentum diffusive terms is presented in Fig. 

Fig. 35
figure 35

A concise summary of δ versus Riemann density diffusive terms as well as artificial viscosity versus Riemann momentum diffusive terms

35.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khayyer, A., Shimizu, Y., Lee, C.H. et al. An improved updated Lagrangian SPH method for structural modelling. Comp. Part. Mech. (2023). https://doi.org/10.1007/s40571-023-00673-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40571-023-00673-z

Keywords

Navigation