Skip to main content

Advertisement

Log in

Kamikihito reduces β-amyloid25–35-induced axon damage via neurotrophic factors

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The Japanese herbal medicine kamikihito (KKT) is widely used for insomnia, anorexia, anemia, and depression. Recently, the efficacy of KKT against Alzheimer's disease (AD) has been demonstrated in clinical and non-clinical studies. To address the mechanism underlying the effect of KKT on AD, we examined the effects of KKT in β-amyloid (Aβ)25–35-exposed primary cultured neurons. The effects of KKT on Aβ25–35-induced neurotoxicity were assessed by immunocytochemical assays and Sholl analysis of neurites, and the influence of KKT on neurotrophic factor (NF) gene expression was examined using RT-PCR analysis. As a result, Aβ25–35 exposure attenuated the arborization of neurites of single cultured hippocampal neurons, and KKT treatment for 3 days ameliorated the Aβ25–35-induced impairment of tau-positive axon outgrowth. This ameliorative effect of KKT was largely abolished by the Trk inhibitor K252a, and expression of NFs, nerve growth factor (Ngf), brain-derived neurotrophic factor (Bdnf), neurotrophin-3 (NT-3) was significantly increased by KKT. These results indicate that KKT ameliorates axonal atrophy via NFs signaling, providing a mechanistic basis for treatment of AD with KKT.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alzheimer’s Association (2018) Alzheimer’s disease facts and figures. Alzheimer’s Dement. 14:367–429. https://doi.org/10.1016/j.jalz.2018.02.001

  2. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189. https://doi.org/10.1101/cshperspect.a006189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Shi M, Chu F, Zhu F, Zhu J (2022) Impact of anti-amyloid-β monoclonal antibodies on the pathology and clinical profile of Alzheimer’s disease: a focus on Aducanumab and Lecanemab. Front Aging Neurosci 14:870517. https://doi.org/10.3389/fnagi.2022.870517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Decourt B, Boumelhem F, Pope ED 3rd, Shi J, Mari Z, Sabbagh MN (2021) Critical appraisal of amyloid lowering agents in AD. Curr Neurol Neurosci Rep 21(8):39. https://doi.org/10.1007/s11910-021-01125-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nogami-Hara A, Kubota K, Takasaki K, Watanabe T, Egahira N, Iba H, Fujikawa R, Katsurabayashi S, Funda Bolukbasi H, Izzettin H-A-K, Iwasaki K (2019) Extract of Yokukansan improves anxiety-like behavior and increases serum brain-derived neurotrophic factor in rats with cerebral ischemia combined with amyloid-42 peptide. J Tradit Chin Med 39(1):50–58

    Google Scholar 

  6. Hirata M, Taniguchi C, Watanabe T, Horikawa T, Akizuki Y, Kubota K, Katsurabayashi S, Iwasaki K (2021) Effects of two kinds of Kampo-hozai, ninjinyoeito and kamikihito, on mental disorder-like behaviors in senescence-accelerated mouse prone 8 mice. Tradit Kampo Med 8(2):176–180. https://doi.org/10.1002/tkm2.1288

    Article  CAS  Google Scholar 

  7. Tsutsumi S, Watanabe T, Hatae A, Hirata M, Omori H, Taniguchi C, Nagao M, Kubota K, Katsurabayashi S, Iwasaki K (2022) Ninjinyoeito exerts an antidepressant-like effect by enhancing the central noradrenergic system. Tradit Kampo Med 9(1):25–31. https://doi.org/10.1002/tkm2.1306

    Article  CAS  Google Scholar 

  8. Kubota K, Watanabe T, Katsurabayashi S, Iwasaki K (2022) Ninjinyoeito reduces β-amyloid25–35-induced axon damage via nerve growth factor. Tradit Kampo Med 9(2):89–97. https://doi.org/10.1002/tkm2.1320

    Article  CAS  Google Scholar 

  9. Ishida K (2016) Effect of donepezil and kamikihito combination therapy on cognitive function in Alzheimer’s disease: retrospective study. Tradit Kampo Med 3(2):94–99. https://doi.org/10.1002/tkm2.1045

    Article  Google Scholar 

  10. Tohda C, Nakada R, Urano T, Okonogi A, Kuboyama T (2011) Kamikihi-to (KKT) rescues axonal and synaptic degeneration associated with memory impairment in a mouse model of Alzheimer’s disease, 5XFAD. Int J Neurosci 121(12):641–648. https://doi.org/10.3109/00207454.2011.602809

    Article  PubMed  Google Scholar 

  11. Egashira N, Manome N, Kurauchi K, Matsumoto Y, Iwasaki K, Mishima K, Shoyama Y, Fujiwara M (2007) Kamikihi-to, a Kampo medicine, ameliorates impairment of spatial memory in rats. Phytother Res 21(2):126–129. https://doi.org/10.1002/ptr.2034

    Article  PubMed  Google Scholar 

  12. Watari H, Shimada Y, Tohda C (2014) New treatment for Alzheimer’s disease, kamikihito, reverses amyloid-β-induced progression of tau phosphorylation and axonal atrophy. Evid Based Complement Altern Med 2014:706487. https://doi.org/10.1155/2014/706487

    Article  Google Scholar 

  13. Tohda C, Matsumoto N, Zou K, Meselhy MR, Komatsu K (2004) Abeta(25–35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, a metabolite of protopanaxadiol-type saponins. Neuropsychopharmacology 29(5):860–868. https://doi.org/10.1038/sj.npp.1300388

    Article  PubMed  CAS  Google Scholar 

  14. Tohda C, Tamura T, Matsuyama S, Komatsu K (2006) Promotion of axonal maturation and prevention of memory loss in mice by extracts of Astragalus mongholicus. Br J Pharmacol 149(5):532–541. https://doi.org/10.1038/sj.bjp.0706865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kuboyama T, Hirotsu K, Arai T, Yamasaki H, Tohda C (2017) Polygalae radix extract prevents axonal degeneration and memory deficits in a transgenic mouse model of Alzheimer’s disease. Front Pharmacol 8:805. https://doi.org/10.3389/fphar.2017.00805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bekkers JM, Stevens CF (1991) Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc Natl Acad Sci U S A 88(17):7834–7838. https://doi.org/10.1073/pnas.88.17.7834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138(2):155–175. https://doi.org/10.1016/j.pharmthera.2013.01.004

    Article  PubMed  CAS  Google Scholar 

  19. Wang J, Gu BJ, Masters CL, Wang YJ (2017) A systemic view of Alzheimer disease—insights from amyloid-beta metabolism beyond the brain. Nat Rev Neurol 13(10):612–623

    Article  PubMed  CAS  Google Scholar 

  20. Olsson F, Schmidt S, Althoff V, Munter LM, Jin S, Rosqvist S, Lendahl U, Multhaup G, Lundkvist J (2014) Characterization of intermediate steps in amyloid beta (Aβ) production under near-native conditions. J Biol Chem 289(3):1540–1550. https://doi.org/10.1074/jbc.M113.498246

    Article  PubMed  CAS  Google Scholar 

  21. Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW (1995) Structure–activity analyses of beta-amyloid peptides: contributions of the beta 25–35 region to aggregation and neurotoxicity. J Neurochem 64(1):253–265. https://doi.org/10.1046/j.1471-4159.1995.64010253.x

    Article  PubMed  CAS  Google Scholar 

  22. Kaminsky YG, Marlatt MW, Smith MA, Kosenko EA (2010) Subcellular and metabolic examination of amyloid-β peptides in Alzheimer disease pathogenesis: evidence for Aβ25–35. Exp Neurol 221(1):26–37. https://doi.org/10.1016/j.expneurol.2009.09.005

    Article  PubMed  CAS  Google Scholar 

  23. Bibel M, Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14(23):2919–2937. https://doi.org/10.1101/gad.841400

    Article  PubMed  CAS  Google Scholar 

  24. Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S (2008) New insights into brain BDNF function in normal aging and Alzheimer’s disease. Brain Res Rev 59(1):201–220. https://doi.org/10.1016/j.brainresrev.2008.07.007

    Article  PubMed  CAS  Google Scholar 

  25. de Miranda AS, de Barros JLVM, Teixeira AL (2020) Is neurotrophin-3 (NT-3): a potential therapeutic target for depression and anxiety? Expert Opin Ther Targets 24(12):1225–1238. https://doi.org/10.1080/14728222.2020.1846720

    Article  PubMed  CAS  Google Scholar 

  26. Yabe T, Tuchida H, Kiyohara H, Takeda T, Yamada H (2003) Induction of NGF synthesis in astrocytes by onjisaponins of Polygala tenuifolia, constituents of kampo (Japanese herbal) medicine, Ninjin-yoei-to. Phytomedicine 10(2–3):106–114. https://doi.org/10.1078/094471103321659799

    Article  PubMed  CAS  Google Scholar 

  27. Wu SD, Xia F, Lin XM, Duan KL, Wang F, Lu QL, Cao H, Qian YH, Shi M (2016) Ginsenoside-Rd promotes neurite outgrowth of PC12 cells through MAPK/ERK- and PI3K/AKT-dependent pathways. Int J Mol Sci 17(2):177. https://doi.org/10.3390/ijms17020177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mao QQ, Zhong XM, Li ZY, Feng CR, Pan AJ, Huang Z (2010) Herbal formula SYJN increases neurotrophin-3 and nerve growth factor expression in brain regions of rats exposed to chronic unpredictable stress. J Ethnopharmacol 131(1):182–186. https://doi.org/10.1016/j.jep.2010.06.019

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Takuya Matsuda, Naoyuki Okamura, Mayu Sakamoto, Erina Ishida, and Yuko Fukunaga for technical assistance. The authors are grateful to Tsumura & Co. (Tokyo, Japan) for generously supplying KKT and NYT. We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Funding

This work was supported by JSPS KAKENHI (K.K., 16K08315, 23K06204; T.W., 23K06249; K.I., 23K06203) and the Fukuoka University Program for Supporting the Research Activities of Female Researchers.

Author information

Authors and Affiliations

Authors

Contributions

KK designed the study. TN and KK performed experiments and analyzed the data. TN, KK, and SK wrote the manuscript. TW, SK, and KI supervised the experiments. All authors read and approved the submitted manuscript.

Corresponding author

Correspondence to Kaori Kubota.

Ethics declarations

Conflict of interest

Katsunori Iwasaki received a research grant (No. 20071, 20091) from Tsumura & Co. The other authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 760 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagamatsu, T., Kubota, K., Watanabe, T. et al. Kamikihito reduces β-amyloid25–35-induced axon damage via neurotrophic factors. J Nat Med 78, 246–254 (2024). https://doi.org/10.1007/s11418-023-01761-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01761-3

Keywords

Navigation