Skip to main content
Log in

Study on the Correlation Between Nimodipine (BCS Class II) Solubility, Dissolution Improvement, and Brain Tissue Concentration Through Cocrystallization

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Background

Cocrystallization by solvent evaporation was used to enhance the dissolution, physicochemical properties, and bioavailability of nimodipine (NMD). Here, we aimed to develop NMD cocrystals with improved solubility and dissolution. Thereafter, our objective was to check the changes in brain tissue concentrations before and after the cocrystal formation of NMD.

Methods

A 32-factor design was used for product optimization by determining the desirability function. Differential scanning calorimetry, powder X-ray diffraction, and scanning electron microscopy were used to confirm the formation of cocrystals.

Results

The saturation solubility study of NMD:SA cocrystals resulted in 9.52 mg/ml, which is 128-fold higher than that of pure NMD (0.074 mg/ml). In vitro dissolution and permeability studies showed an improvement in the percentage of drug release and permeability of NMD from cocrystals as compared to pristine NMD. An in vivo study of oral bioavailability in Wistar rats demonstrated higher plasma and brain tissue concentrations of NMD in the cocrystal form than in the conventional oral suspension.

Discussions

The findings of this study showed a positive correlation between nimodipine solubility, improvement in dissolution, and its effect on brain tissue concentration in Wistar rats. The improved solubility of nimodipine may lead to increased dissolution rates, which can enhance its bioavailability and therapeutic efficacy in the treatment of cerebral vasospasms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on request to authors.

References

  1. Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 2007;59(7):617–30. Available from: https://www.sciencedirect.com/science/article/pii/S0169409X07000828.

  2. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012(100 mL):1–10.

  3. Bavishi DD, Borkhataria CH. Spring and parachute: how cocrystals enhance solubility. Prog Cryst Growth Charact Mater. 2016;62(3):1–8.

    Article  CAS  Google Scholar 

  4. Urso R, Blardi P, Giorgi G. A short introduction to pharmacokinetics. Eur Rev Med Pharmacol Sci. 2002;6(2):33–44.

    CAS  PubMed  Google Scholar 

  5. Kotak U, Prajapati V, Solanki H, Jani G, Jha P. Co-crystallization technique - its rationale and recent progress. World J Pharm Pharm Sci. 2015;4(04):1484–508.

    CAS  Google Scholar 

  6. Vaghela P, Tank HM, Jalpa P. Cocrystals : a novel approach to improve the physicochemical and mechanical properties. Indo Am J Pharm Res. 2014;4(10).

  7. Desiraju G. Crystal engineering: a brief overview. J Chem Sci. 2010;122:667–75.

    Article  CAS  Google Scholar 

  8. Elliott WJ, Ram CVS. Calcium channel blockers. J Clin Hypertens (Greenwich). 2011;13(9):687–9.

    Article  CAS  PubMed  Google Scholar 

  9. Mahmoud SH, Ji X, Isse FA. Nimodipine pharmacokinetic variability in various patient populations. Drugs R D. 2020;20(4):307–18.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Riekes MK, Caon T, da Silva J, Sordi R, Kuminek G, Bernardi LS, et al. Enhanced hypotensive effect of NMD solid dispersions produced by supercritical CO2 drying. Powder Technol. 2015;278:204–10.

    Article  CAS  Google Scholar 

  11. Zhao Y, Xin T, Ye T, Yang X, Pan W. Solid dispersion in the development of a NMD delayed-release tablet formulation. Asian J Pharm Sci. 2014;9(1):35–41.

    Article  Google Scholar 

  12. Sun Y, Rui Y, Wenliang Z, Tang X. NMD semi-solid capsules containing solid dispersion for improving dissolution. Int J Pharm. 2008;359(1):144–9.

    Article  CAS  PubMed  Google Scholar 

  13. Zu Y, Li N, Zhao X, Li Y, Ge Y, Wang W, et al. In vitro dissolution enhancement of micronized l-NMD by antisolvent re-crystallization from its crystal form H. Int J Pharm. 2014;464(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  14. Hänggi D, Etminan N, Macdonald RL, Steiger HJ, Mayer SA, Aldrich F, et al. NEWTON: NMD microparticles to enhance recovery while reducing toxicity after subarachnoid hemorrhage. Neurocrit Care. 2015;23(2):274–84.

    Article  PubMed  Google Scholar 

  15. Fu Q, Sun J, Zhang D, Li M, Wang Y, Ling G, et al. NMD nanocrystals for oral bioavailability improvement: preparation, characterization and pharmacokinetic studies. Colloids Surf B Biointerfaces. 2013;109:161–6.

    Article  CAS  PubMed  Google Scholar 

  16. Yu J, He HB, Tang X. Formulation and evaluation of NMD-loaded lipid microspheres. J Pharm Pharmacol. 2006;58(11):1429–35.

    Article  CAS  PubMed  Google Scholar 

  17. Xiong R, Lu W, Li J, Wang P, Xu R, Chen T. Preparation and characterization of intravenously injectable NMD nanosuspension. Int J Pharm. 2008;350(1):338–43.

    Article  CAS  PubMed  Google Scholar 

  18. Fu Q, Kou L, Gong C, Li M, Sun J, Zhang D, et al. Relationship between dissolution and bioavailability for NMD colloidal dispersions: the critical size in improving bioavailability. Int J Pharm. 2012;427(2):358–64.

    Article  CAS  PubMed  Google Scholar 

  19. Liu M, Hong C, Yao Y, Shen H, Ji G, Li G, et al. Development of a pharmaceutical cocrystal with solution crystallization technology: preparation, characterization, and evaluation of myricetin-proline cocrystals. Eur J Pharm Biopharm. 2016;107:151–9.

    Article  CAS  PubMed  Google Scholar 

  20. Alatas F, Ratih H, Soewandhi SN. Enhancement of solubility and dissolution rate of telmisartan by telmisartan-oxalic acid co-crystal formation. Int J Pharm Pharm Sci. 2015;7(3):423–6.

    CAS  Google Scholar 

  21. Hiendrawan S, Hartanti AW, Veriansyah B, Widjojokusumo E, Tjandrawinata RR. Solubility enhancement of ketoconazole via salt and cocrystal formation. Int J Pharm Pharm Sci. 2015;7(7):160–4.

    CAS  Google Scholar 

  22. Shewale S, Shete AS, Doijad RC, Kadam SS, Patil VA, Yadav AV. Formulation and solid state characterization of nicotinamide-based co-crystals of fenofibrate. Indian J Pharm Sci. 2015;77(3):328–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sarkar A, Rohani S. Cocrystals of acyclovir with promising physicochemical properties. J Pharm Sci. 2015;104(1):98–105.

    Article  CAS  PubMed  Google Scholar 

  24. Shah K, Borhade SD, Londhe V. Utilization of co-crystallization for solubility enhancement of a poorly soluble antiretroviral drug - RITONAVIR. Int j Pharm Pharm Sci. 2014;(2):556–8.

  25. Sanphui P, Devi VK, Clara D, Malviya N, Ganguly S, Desiraju GR. Cocrystals of hydrochlorothiazide: solubility and diffusion/permeability enhancements through drug–coformer interactions. Mol Pharm. 2015;12(5):1615–22.

    Article  CAS  PubMed  Google Scholar 

  26. Lee G, Goosens KA. Sampling blood from the lateral tail vein of the rat. J Vis Exp. 2015;99: e52766.

    Google Scholar 

  27. Brahmankar DM, Jaiswal SB. Biopharmaceutics and pharmacokinetics: a treatise. Vallabh Prakashan. 2005. Available from: https://books.google.co.in/books?id=PVCEMwEACAAJ.

  28. Zhang Q, Jiang X, Wu C. Distribution of NMD in brain following intranasal administration in rats. Acta Pharmacol Sin. 2004;25(4):522–7.

    CAS  PubMed  Google Scholar 

  29. Paduszyński K. Extensive evaluation of the conductor-like screening model for real solvents method in predicting liquid-liquid equilibria in ternary systems of ionic liquids with molecular compounds. J Phys Chem B. 2018;122(14):4016–28.

    Article  PubMed  Google Scholar 

  30. Sathisaran I, Dalvi SV. Crystal engineering of curcumin with salicylic acid and hydroxyquinol as coformers. Cryst Growth Des. 2017;17(7):3974–88.

    Article  CAS  Google Scholar 

  31. Panzade P, Shendarkar G, Shaikh S, Rathi PB. Pharmaceutical cocrystal of piroxicam: design, formulation and evaluation. Adv Pharm Bull. 2017;7(3):399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu E, Rodríguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. CrystEngComm. 2008;10(6):665–8.

    Article  CAS  Google Scholar 

  33. Beck R, Nyster TO, Enstad GG, Malthe-Sørenssen D, Andreassen JP. Influence of crystal properties on powder flow behavior of an aromatic amine and l-glutamic acid. Part Sci Technol. 2010;28(2):146–60.

    Article  CAS  Google Scholar 

  34. Rahman Z, Agarabi C, Zidan AS, Khan SR, Khan MA. Physico-mechanical and stability evaluation of carbamazepine cocrystal with nicotinamide. AAPS PharmSciTech. 2011;12(2):693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Emami S, Siahi-Shadbad M, Adibkia K, Barzegar-Jalali M. Recent advances in improving oral drug bioavailability by cocrystals. BioImpacts. 2018;8(4):305–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Towart R, Wehinger E, Meyer H, Kazda S. The effects of NMD, its optical isomers and metabolites on isolated vascular smooth muscle. Arzneimittelforschung. 1982;32(4):338–46.

    CAS  PubMed  Google Scholar 

  37. Wessell A, Kole MJ, Badjatia N, Parikh G, Albrecht JS, Schreibman DL, et al. High compliance with scheduled NMD is associated with better outcome in aneurysmal subarachnoid hemorrhage patients cotreated with heparin infusion. Front Neurol. 2017;8:268.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Herbette LG, Mason PE, Sweeney KR, Trumbore MW, Mason RP. Favorable amphiphilicity of NMD facilitates its interactions with brain membranes. Neuropharmacology. 1994;33(2):241–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Nilam Rathod and Vidhi Patel—research; Ravi Manek and Chetan Borkhataria—guidance and article draft. Nilesh Patel, Kalpesh Patel, and Jalpa Paun—calculations and factorial design. Dhruv Sakhiya—inferences and discussion of the results.

Corresponding author

Correspondence to Chetan Borkhataria.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathod, N., Borkhataria, C., Manek, R. et al. Study on the Correlation Between Nimodipine (BCS Class II) Solubility, Dissolution Improvement, and Brain Tissue Concentration Through Cocrystallization. J Pharm Innov 18, 2235–2248 (2023). https://doi.org/10.1007/s12247-023-09786-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-023-09786-7

Keywords

Navigation