Skip to main content

Advertisement

Log in

The role of astrocytes in the glymphatic network: a narrative review

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

To date, treatment of Central Nervous System (CNS) pathology has largely focused on neuronal structure and function. Yet, revived attention towards fluid circulation within the CNS has exposed the need to further explore the role of glial cells in maintaining homeostasis within neural networks. In the past decade, discovery of the neural glymphatic network has revolutionized traditional understanding of fluid dynamics within the CNS. Advancements in neuroimaging have revealed alternative pathways of cerebrospinal fluid (CSF) generation and efflux. Here, we discuss emerging perspectives on the role of astrocytes in CSF hydrodynamics, with particular focus on the contribution of aquaporin-4 channels to the glymphatic network. Astrocytic structural features and expression patterns are detailed in relation to their function in maintaining integrity of the Blood Brain Barrier (BBB) as part of the neurovascular unit (NVU). This narrative also highlights the potential role of glial dysfunction in pathogenesis of neurodegenerative disease, hydrocephalus, intracranial hemorrhage, ischemic stroke, and traumatic brain injury. The purpose of this literature summary is to provide an update on the changing landscape of scientific theory surrounding production, flow, and absorption of cerebrospinal fluid. The overarching aim of this narrative review is to advance the conception of basic, translational, and clinical research endeavors investigating glia as therapeutic targets for neurological disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  • Amiry-Moghaddam M, Otsuka T, Hurn PD, Traystman RJ, Haug FM, Froehner SC, Adams ME, Neely JD, Agre P, Ottersen OP, Bhardwaj A (2003) An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci U S A 100:2106–2111

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Arighi A, Arcaro M, Fumagalli GG, Carandini T, Pietroboni AM, Sacchi L, Fenoglio C, Serpente M, Sorrentino F, Isgro G, Turkheimer F, Scarpini E, Galimberti D (2022) Aquaporin-4 cerebrospinal fluid levels are higher in neurodegenerative Dementia: looking at glymphatic system dysregulation. Alzheimers Res Ther 14:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212:991–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badaut J, Brunet JF, Grollimund L, Hamou MF, Magistretti PJ, Villemure JG, Regli L (2003) Aquaporin 1 and aquaporin 4 expression in human brain after subarachnoid Hemorrhage and in peritumoral tissue. Acta Neurochir Suppl 86:495–498

    CAS  PubMed  Google Scholar 

  • Becker-Krail DD, Ketchesin KD, Burns JN, Zong W, Hildebrand MA, DePoy LM, Vadnie CA, Tseng GC, Logan RW, Huang YH and C. A. McClung. 2022. ‘Astrocyte Molecular Clock Function in the Nucleus Accumbens Is Important for Reward-Related Behavior’, Biol Psychiatry, 92: 68–80

  • Belmaati Cherkaoui M, Vacca O, Izabelle C, Boulay AC, Boulogne C, Gillet C, Barnier JV, Rendon A, Cohen-Salmon M, Vaillend C (2021) ‘Dp71 contribution to the molecular scaffold anchoring aquaporine-4 channels in brain macroglial cells’, Glia, 69: 954 – 70

  • Benveniste H, Lee H, Ding F, Sun Q, Al-Bizri E, Makaryus R, Probst S, Nedergaard M, Stein EA, Lu H (2017a) Anesthesia with Dexmedetomidine and low-dose isoflurane increases Solute Transport via the Glymphatic Pathway in rat brain when compared with high-dose isoflurane. Anesthesiology 127:976–988

    Article  CAS  PubMed  Google Scholar 

  • Benveniste H, Lee H, Volkow ND (2017b) The glymphatic pathway: Waste removal from the CNS via Cerebrospinal Fluid Transport. Neuroscientist 23:454–465

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloch O, Auguste KI, Manley GT, Verkman AS (2006) Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab 26:1527–1537

    Article  CAS  PubMed  Google Scholar 

  • Boulay AC, Saubamea B, Cisternino S, Mignon V, Mazeraud A, Jourdren L, Blugeon C, Cohen-Salmon M (2015) The Sarcoglycan complex is expressed in the cerebrovascular system and is specifically regulated by astroglial Cx30 channels. Front Cell Neurosci 9:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Brinker T, Stopa E, Morrison J, Klinge P (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Castaneyra-Ruiz L, Gonzalez-Marrero I, Gonzalez-Toledo JM, Castaneyra-Ruiz A, de Paz-Carmona H, Castaneyra-Perdomo A, Carmona-Calero EM (2013) Aquaporin-4 expression in the cerebrospinal fluid in congenital human hydrocephalus. Fluids Barriers CNS 10:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciappelloni S, Bouchet D, Dubourdieu N, Boue-Grabot E, Kellermayer B, Manso C, Marignier R, Oliet SHR, Tourdias T, Groc L (2019) ‘Aquaporin-4 Surface Trafficking Regulates Astrocytic Process Motility and Synaptic Activity in Health and Autoimmune Disease’, Cell Rep, 27: 3860-72 e4

  • Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, Contarino C, Onengut-Gumuscu S, Farber E, Raper D, Viar KE, Powell RD, Baker W, Dabhi N, Bai R, Cao R, Hu S, Rich SS, Munson JM, Lopes MB, Overall CC, Acton ST, Kipnis J (2018) Functional aspects of meningeal lymphatics in ageing and Alzheimer’s Disease. Nature 560:185–191

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7:a020412

    Article  PubMed  PubMed Central  Google Scholar 

  • Delaidelli A, Moiraghi A (2017) Respiration: a new mechanism for CSF circulation? J Neurosci 37:7076–7078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Zhang T, Wu G, McBride DW, Xu N, Klebe DW, Zhang Y, Li Q, Tang J, Zhang JH (2019) Astrogliosis inhibition attenuates hydrocephalus by increasing cerebrospinal fluid reabsorption through the glymphatic system after germinal matrix Hemorrhage. Exp Neurol 320:113003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong T, Li M, Gao F, Wei P, Wang J (2022) Construction and imaging of a neurovascular unit model. Neural Regen Res 17:1685–1694

    Article  PubMed  PubMed Central  Google Scholar 

  • Eide PK, Hansson HA (2018) Astrogliosis and impaired aquaporin-4 and dystrophin systems in idiopathic normal pressure hydrocephalus. Neuropathol Appl Neurobiol 44:474–490

    Article  CAS  PubMed  Google Scholar 

  • Emmert AS, Iwasawa E, Shula C, Schultz P, Lindquist D, Dunn RS, Fugate EM, Hu YC, Mangano FT, Goto J (2019) ‘Impaired neural differentiation and glymphatic CSF flow in the Ccdc39 rat model of neonatal hydrocephalus: genetic interaction with L1cam’, Dis Model Mech, 12

  • Erlich SS, McComb JG, Hyman S, Weiss MH (1986) Ultrastructural morphology of the olfactory pathway for cerebrospinal fluid drainage in the rabbit. J Neurosurg 64:466–473

    Article  CAS  PubMed  Google Scholar 

  • Gaberel T, Gakuba C, Goulay R, Martinez De Lizarrondo S, Hanouz JL, Emery E, Touze E, Vivien D, Gauberti M (2014) Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke 45:3092–3096

    Article  CAS  PubMed  Google Scholar 

  • Gakuba C, Gaberel T, Goursaud S, Bourges J, Di Palma C, Quenault A, Martinez S, de Lizarrondo D, Vivien, Gauberti M (2018) Theranostics 8:710–722 ‘General Anesthesia Inhibits the Activity of the “Glymphatic System"’

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George PM, Steinberg GK (2015) Novel Stroke therapeutics: unraveling Stroke pathophysiology and its impact on clinical treatments. Neuron 87:297–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goulay R, Flament J, Gauberti M, Naveau M, Pasquet N, Gakuba C, Emery E, Hantraye P, Vivien D, Aron-Badin R, Gaberel T (2017) Stroke 48:2301–2305 ‘Subarachnoid Hemorrhage Severely Impairs Brain Parenchymal Cerebrospinal Fluid Circulation in Nonhuman Primate’

    Article  PubMed  Google Scholar 

  • Hablitz LM, Pla V, Giannetto M, Vinitsky HS, Staeger FF, Metcalfe T, Nguyen R, Benrais A, Nedergaard M (2020) Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun 11:4411

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannocks MJ, Pizzo ME, Huppert J, Deshpande T, Abbott NJ, Thorne RG, Sorokin L (2018) Molecular characterization of perivascular drainage pathways in the murine brain. J Cereb Blood Flow Metab 38:669–686

    Article  CAS  PubMed  Google Scholar 

  • Harrison IF, Ismail O, Machhada A, Colgan N, Ohene Y, Nahavandi P, Ahmed Z, Fisher A, Meftah S, Murray TK, Ottersen OP, Nagelhus EA, O’Neill MJ, Wells JA, Lythgoe MF (2020) Impaired glymphatic function and clearance of tau in an Alzheimer’s Disease model. Brain 143:2576–2593

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoddevik EH, Khan FH, Rahmani S, Ottersen OP, Boldt HB, Amiry-Moghaddam M (2017) Factors determining the density of AQP4 water channel molecules at the brain-blood interface. Brain Struct Funct 222:1753–1766

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Yao HT, Zhang WP, Zhang L, Ding W, Zhang SH, Chen Z, Wei EQ (2005) Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors. J Zhejiang Univ Sci B 6:33–37

    Article  PubMed  Google Scholar 

  • Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular coupling in Health and Disease. Neuron 96:17–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, Deane R, Nedergaard M (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33:18190–18199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, Singh I, Deane R, Nedergaard M (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34:16180–16193

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeon T, Park KS, Park SH, Hwang JH, Hwang SK (2017) Expression of Aquaporin 1 and 4 in the Choroid Plexus and Brain Parenchyma of Kaolin-Induced Hydrocephalic rats. Korean J Neurotrauma 13:68–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeon H, Kim M, Park W, Lim JS, Lee E, Cha H, Ahn JS, Kim JH, Hong SH, Park JE, Lee EJ, Woo CW, Lee S (2021) Upregulation of AQP4 improves blood-brain Barrier Integrity and Perihematomal Edema following intracerebral Hemorrhage. Neurotherapeutics 18:2692–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jessen NA, Munk AS, Lundgaard I, Nedergaard M (2015) The Glymphatic System: a beginner’s guide. Neurochem Res 40:2583–2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Liu Z, Liao Y, Sun S, Dai Y, Tang Y (2022) Ischemic Stroke: from pathological mechanisms to neuroprotective strategies. Front Neurol 13:1013083

    Article  PubMed  PubMed Central  Google Scholar 

  • Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and Disease. Cerebrospinal Fluid Res 5:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Kedarasetti RT, Drew PJ, Costanzo F (2020) Arterial pulsations drive oscillatory flow of CSF but not directional pumping. Sci Rep 10:10102

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitchen P, Salman MM, Halsey AM, Clarke-Bland C, MacDonald JA, Ishida H, Vogel HJ, Almutiri S, Logan A, Kreida S, Al-Jubair T, Winkel Missel J, Gourdon P, Tornroth-Horsefield S, Conner MT, Ahmed Z, Conner AC and R. M. Bill. 2020. ‘Targeting Aquaporin-4 Subcellular Localization to Treat Central Nervous System Edema’, Cell, 181: 784–799 e19.

  • Korogod N, Petersen CC, Knott GW (2015) ‘Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation’, Elife, 4

  • Lananna BV, Nadarajah CJ, Izumo M, Cedeno MR, Xiong DD, Dimitry J, Tso CF, McKee CA, Griffin P, Sheehan PW, Haspel JA, Barres BA, Liddelow SA, Takahashi JS, Karatsoreos IN and E. S. Musiek. 2018. ‘Cell-Autonomous Regulation of Astrocyte Activation by the Circadian Clock Protein BMAL1’, Cell Rep, 25: 1–9 e5.

  • Li G, Cao Y, Tang X, Huang J, Cai L, Zhou L (2022) The meningeal lymphatic vessels and the glymphatic system: potential therapeutic targets in neurological disorders. J Cereb Blood Flow Metab 42:1364–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lilius TO, Blomqvist K, Hauglund NL, Liu G, Staeger FF, Baerentzen S, Du T, Ahlstrom F, Backman JT, Kalso EA, Rauhala PV, Nedergaard M (2019) Dexmedetomidine enhances glymphatic brain delivery of intrathecally administered Drugs. J Control Release 304:29–38

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wu G, Tang N, Li L, Liu C, Wang F, Ke S (2021) Glymphatic drainage blocking aggravates brain Edema, Neuroinflammation via modulating TNF-alpha, IL-10, and AQP4 after intracerebral Hemorrhage in rats. Front Cell Neurosci 15:784154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Bilston LE, Flores Rodriguez N, Wright C, McMullan S, Lloyd R, Stoodley MA, Hemley SJ (2022) Changes in intrathoracic pressure, not arterial pulsations, exert the greatest effect on tracer influx in the spinal cord. Fluids Barriers CNS 19:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louveau A, Herz J, Alme MN, Salvador AF, Dong MQ, Viar KE, Herod SG, Knopp J, Setliff JC, Lupi AL, Da Mesquita S, Frost EL, Gaultier A, Harris TH, Cao R, Hu S, Lukens JR, Smirnov I, Overall CC, Oliver G, Kipnis J (2018) CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci 21:1380–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunde LK, Camassa LM, Hoddevik EH, Khan FH, Ottersen OP, Boldt HB, Amiry-Moghaddam M (2015) Postnatal development of the molecular complex underlying astrocyte polarization. Brain Struct Funct 220:2087–2101

    Article  PubMed  Google Scholar 

  • Lundgaard I, Lu ML, Yang E, Peng W, Mestre H, Hitomi E, Deane R, Nedergaard M (2017) Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab 37:2112–2124

    Article  CAS  PubMed  Google Scholar 

  • Mader S, Brimberg L (2019) ‘Aquaporin-4 Water Channel in the Brain and Its Implication for Health and Disease’, Cells, 8

  • Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) ‘The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction’, Glia, 58: 1094 – 103

  • McKnight CD, Rouleau RM, Donahue MJ, Claassen DO (2020) The regulation of cerebral spinal fluid Flow and its relevance to the Glymphatic System. Curr Neurol Neurosci Rep 20:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Mestre H, Hablitz LM, Xavier AL, Feng W, Zou W, Pu T, Monai H, Murlidharan G, Castellanos Rivera RM, Simon MJ, Pike MM, Pla V, Du T, Kress BT, Wang X, Plog BA, Thrane AS, Lundgaard I, Abe Y, Yasui M, Thomas JH, Xiao M, Hirase H, Asokan A, Iliff JJ, Nedergaard M (2018a) ‘Aquaporin-4-dependent glymphatic solute transport in the rodent brain’, Elife, 7

  • Mestre H, Tithof J, Du T, Song W, Peng W, Sweeney AM, Olveda G, Thomas JH, Nedergaard M, Kelley DH (2018b) Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in Hypertension. Nat Commun 9:4878

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Mestre H, Du T, Sweeney AM, Liu G, Samson AJ, Peng W, Mortensen KN, Staeger FF, Bork PAR, Bashford L, Toro ER, Tithof J, Kelley DH, Thomas JH, Hjorth PG, Martens EA, Mehta RI, Solis O, Blinder P, Kleinfeld D, Hirase H, Mori Y, Nedergaard M (2020a) ‘Cerebrospinal fluid influx drives acute ischemic tissue swelling’, Science, 367

  • Mestre H, Mori Y, Nedergaard M (2020b) The Brain’s Glymphatic System: current controversies. Trends Neurosci 43:458–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyajima M, Arai H (2015) Evaluation of the production and absorption of Cerebrospinal Fluid. Neurol Med Chir (Tokyo) 55:647–656

    Article  PubMed  Google Scholar 

  • Munk AS, Wang W, Bechet NB, Eltanahy AM, Cheng AX, Sigurdsson B, Benraiss A, Mae MA, Kress BT, Kelley DH, Betsholtz C, Mollgard K, Meissner A, Nedergaard M and I. Lundgaard. 2019. ‘PDGF-B Is Required for Development of the Glymphatic System’, Cell Rep, 26: 2955-69 e3

  • Nagra G, Koh L, Zakharov A, Armstrong D, Johnston M (2006) Quantification of cerebrospinal fluid transport across the cribriform plate into lymphatics in rats. Am J Physiol Regul Integr Comp Physiol 291:R1383–R1389

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M (2013) Neuroscience. Garbage truck of the brain. Science 340:1529–1530

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Neri M, Frati A, Turillazzi E, Cantatore S, Cipolloni L, Di Paolo M, Frati P, La Russa R, Maiese A, Scopetti M, Santurro A, Sessa F, Zamparese R, Fineschi V (2018) ‘Immunohistochemical Evaluation of Aquaporin-4 and its Correlation with CD68, IBA-1, HIF-1alpha, GFAP, and CD15 Expressions in Fatal Traumatic Brain Injury’, Int J Mol Sci, 19

  • Nicaise AM, D’Angelo A, Ionescu RB, Krzak G, Willis CM, Pluchino S (2022) The role of neural stem cells in regulating glial scar formation and repair. Cell Tissue Res 387:399–414

    Article  PubMed  Google Scholar 

  • Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nycz B, Mandera M (2021) The features of the glymphatic system. Auton Neurosci 232:102774

    Article  CAS  PubMed  Google Scholar 

  • Pathak D, Sriram K (2023) Neuron-astrocyte omnidirectional signaling in neurological health and Disease. Front Mol Neurosci 16:1169320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng S, Liu J, Liang C, Yang L, Wang G (2023) Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders. Neurobiol Dis 179:106035

    Article  CAS  PubMed  Google Scholar 

  • Plog BA, Nedergaard M (2018) The Glymphatic System in Central Nervous System Health and Disease: past, Present, and Future. Annu Rev Pathol 13:379–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plog BA, Dashnaw ML, Hitomi E, Peng W, Liao Y, Lou N, Deane R, Nedergaard M (2015) Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci 35:518–526

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao SB, Skauli N, Jovanovic N, Katoozi S, Frigeri A, Froehner SC, Adams ME, Ottersen OP, Amiry-Moghaddam M (2021) Orchestrating aquaporin-4 and connexin-43 expression in brain: Differential roles of alpha1- and beta1-syntrophin. Biochim Biophys Acta Biomembr 1863:183616

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen MK, Mestre H, Nedergaard M (2022) Fluid transport in the brain. Physiol Rev 102:1025–1151

    Article  CAS  PubMed  Google Scholar 

  • Reith W, Haussmann A (2018) ‘[Importance of Virchow-Robin spaces]’, Radiologe, 58: 142 – 47

  • Ringstad G, Vatnehol SAS, Eide PK (2017) ‘Glymphatic MRI in idiopathic normal pressure hydrocephalus’, Brain, 140: 2691 – 705

  • Saetra MJ, Ellingsrud AJ, Rognes ME (2023) Neural activity induces strongly coupled electro-chemo-mechanical interactions and fluid flow in astrocyte networks and extracellular space-A computational study. PLoS Comput Biol 19:e1010996

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Saini H, Fernandez G, Kerr D, Levy M (2010) Differential expression of aquaporin-4 isoforms localizes with neuromyelitis optica Disease activity. J Neuroimmunol 221:68–72

    Article  CAS  PubMed  Google Scholar 

  • Salman MM, Kitchen P, Halsey A, Wang MX, Tornroth-Horsefield S, Conner AC, Badaut J, Iliff JJ, Bill RM (2022) ‘Emerging roles for dynamic aquaporin-4 subcellular relocalization in CNS water homeostasis’, Brain, 145: 64–75

  • Sandrone S, Moreno-Zambrano D, Kipnis J, van Gijn J (2019) A (delayed) history of the brain lymphatic system. Nat Med 25:538–540

    Article  CAS  PubMed  Google Scholar 

  • Satow T, Aso T, Nishida S, Komuro T, Ueno T, Oishi N, Nakagami Y, Odagiri M, Kikuchi T, Yoshida K, Ueda K, Kunieda T, Murai T, Miyamoto S, Fukuyama H (2017) Alteration of venous drainage Route in Idiopathic Normal pressure Hydrocephalus and normal aging. Front Aging Neurosci 9:387

    Article  PubMed  PubMed Central  Google Scholar 

  • Shetty AK, Zanirati G (2020) The interstitial system of the brain in Health and Disease. Aging Dis 11:200–211

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva I, Silva J, Ferreira R, Trigo D (2021) Glymphatic system, AQP4, and their implications in Alzheimer’s Disease. Neurol Res Pract 3:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon MJ, Murchison C, Iliff JJ (2018) A transcriptome-based assessment of the astrocytic dystrophin-associated complex in the developing human brain. J Neurosci Res 96:180–193

    Article  CAS  PubMed  Google Scholar 

  • Spera I, Cousin N, Ries M, Kedracka A, Castillo A, Aleandri S, Vladymyrov M, Mapunda JA, Engelhardt B, Luciani P, Detmar M, Proulx ST (2023) ‘Open pathways for cerebrospinal fluid outflow at the cribriform plate along the olfactory nerves’, EBioMedicine, 91: 104558

  • Sun Y, Sun X (2021) Exploring the interstitial system in the brain: the last mile of drug delivery. Rev Neurosci 32:363–377

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Lin L, Yin L, Hao X, Tian J, Zhang X, Ren Y, Li C, Yang Y (2022) Acutely inhibiting AQP4 with TGN-020 improves functional outcome by attenuating Edema and Peri-infarct Astrogliosis after cerebral ischemia. Front Immunol 13:870029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taoka T, Kawai H, Nakane T, Abe T, Nakamichi R, Ito R, Sasaki Y, Nishida A, Naganawa S (2021) Evaluating the effect of arterial pulsation on Cerebrospinal Fluid Motion in the Sylvian Fissure of patients with Middle cerebral artery occlusion using low b-value diffusion-weighted imaging. Magn Reson Med Sci 20:371–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang R, Zhang X, Zhang J, Fan Y, Shen Y, Hu W, Chen Z (2012) Oxygen-glucose deprivation induced glial scar-like change in astrocytes. PLoS ONE 7:e37574

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Huang J, Ma Y, Tang G, Liu Y, Chen X, Zhang Z, Zeng L, Wang Y, Ouyang YB, Yang GY (2015) MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4. J Cereb Blood Flow Metab 35:1977–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Science 342:373–377 ‘Sleep drives metabolite clearance from the adult brain’

    Article  ADS  CAS  PubMed  Google Scholar 

  • Xiong A, Xiong R, Yu J, Liu Y, Liu K, Jin G, Xu J, and J. Yan (2021) Aquaporin-4 is a potential drug target for traumatic brain injury via aggravating the severity of brain edema. Burns Trauma 9:tkaa050

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Xiao N, Chen Y, Huang H, Marshall C, Gao J, Cai Z, Wu T, Hu G, Xiao M (2015) Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain abeta accumulation and memory deficits. Mol Neurodegener 10:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye F, Keep RF, Hua Y, Garton HJL, Xi G (2023) Glymphatic system and post-hemorrhagic Hydrocephalus. Brain Hemorrhages 4:44–46

    Article  PubMed  Google Scholar 

  • Zbesko JC, Nguyen TV, Yang T, Frye JB, Hussain O, Hayes M, Chung A, Day WA, Stepanovic K, Krumberger M, Mona J, Longo FM and K. P. Doyle. 2018. ‘Glial scars are permeable to the neurotoxic environment of chronic stroke infarcts’, Neurobiol Dis, 112: 63–78

  • Zeppenfeld DM, Simon M, Haswell JD, D’Abreo D, Murchison C, Quinn JF, Grafe MR, Woltjer RL, Kaye J, Iliff JJ (2017) Association of Perivascular Localization of Aquaporin-4 with cognition and Alzheimer Disease in Aging brains. JAMA Neurol 74:91–99

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by funding from the US FDA National Center for Toxicological Research.

Author information

Authors and Affiliations

Authors

Contributions

Nikita Das (ND) is the lead author who has substantially contributed to writing the manuscript. Ravi Dhamija (RD) has written and helped obtaining literature search and reviewing the manuscript. Sumit Sarkar (SS) is the corresponding author and primary input on experiment design, performed animal sacrifice, tissue processing and immunolabeling of histological sections, data collection and interpretation of photomicrographs and editing of manuscript.

Corresponding author

Correspondence to Sumit Sarkar.

Ethics declarations

Conflict of interest

The authors have no financial or non-financial interests to disclose that are relevant to the contents of this article.

Ethics approval

This review study did not involve human subjects and was performed in accordance with the latest amendments of the 1964 Declaration of Helsinki.

Consent to participate

Not applicable.

Consent for publication

All authors have reviewed the final manuscript. This manuscript passed internal clearance required by the National Center for Toxicological Research.

Disclaimer

This manuscript reflects the views of the authors and does not necessarily reflect those of the Food and Drug Administration. Any mention of commercial products is for clarification only and is not intended as approval, endorsement, or recommendation.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, N., Dhamija, R. & Sarkar, S. The role of astrocytes in the glymphatic network: a narrative review. Metab Brain Dis 39, 453–465 (2024). https://doi.org/10.1007/s11011-023-01327-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-023-01327-y

Keywords

Navigation