Skip to main content
Log in

Chemical characterization of the crude extract of Sauromatum venosum (voodoo lily) and docking study with 12-O-acetylingol 8-tiglate for cytotoxicity testing in SaOS2 (osteoblastic osteosarcoma cells)

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The current study was carried out to investigate the anticancer potential of Sauromatum venosum (SV) tuber by gas chromatography with high-resolution mass spectrometry (GC–HRMS) analysis of ethanolic (eSV), hydroalcoholic (hSV), and aqueous extracts (wSV), and in silico study were performed to investigate the main targets of 12-O-acetylingol 8-tiglate by computational docking. The GC–HRMS analysis of three plant samples was carried out on a system equipped with a high-resolution mass spectrometer. The major compounds were identified in all crude extracts. Computation docking analysis was performed for the prediction of the main target of the cancer proliferation of active compound of the Sauromatum venosum tuber extract in cancer therapy. A total of 45 phytocompounds were detected including diterpenoids, esters of fatty acid, hydrocarbons, and alkanes in the tuber of SV. Among all the crude samples tested, eSV showed the lowest IC50 value treated with SaOS2 cells. 12-O-acetylingol 8-tiglate is one of the phytocompounds identified in eSV extract and has been found to exhibit cytotoxic effects against various cancer cells, as reported in the research. It shows the optimum binding affinity with − 8.59 kcal/mol binding energy with a molecular target protein TNF-α (PDB ID: 7PKA). The observed interactions strongly support the anticancer activity of 12-O-acetylingol 8-tiglate and its role in the medicinal efficacy of the plant. These findings highlight the potential of the compound as a valuable source for the development of a therapeutic agent aimed at combating cancer. However, it is important to note that additional in vitro and in vivo studies are required to validate these findings and establish the therapeutic potential.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The supportive data of the findings of this study are available from the co-responding author upon the reasonable request.

Abbreviations

GC–HRMS:

Gas chromatograph–high-resolution mass spectrometer

TLC:

Thin-layer chromatography

UV–Vis:

Ultra violet–visible

WHO:

World Health Organization

SV:

Sauromatum venosum

eSV:

Ethanolic crude extract

hSV:

Hydroalcoholic crude extract

wSV:

Aqueous crude extract

TNF- α:

Tumor necrosis factor-alpha

References

  1. S. Painuli, N. Rai, N. Kumar, Asian J. Pharm. Clin. Res. 9(1), 101–104 (2016)

    CAS  Google Scholar 

  2. D.R. Encarnación, G.S. Keer, J. Ethnopharmacol. 31(2), 181–192 (1991). https://doi.org/10.1016/0378-8741(91)90004-w

    Article  Google Scholar 

  3. U. Lindequist, T.H.J. Niedermeyer, W.D. Jülich, Alternat. Med. 2(3), 285–299 (2005). https://doi.org/10.1093/ecam/neh107

    Article  Google Scholar 

  4. M.L. Seca, D.C.G.A. Pinto, Int. J. Mol. Sci. (2018). https://doi.org/10.3390/ijms19010263

    Article  PubMed  PubMed Central  Google Scholar 

  5. Z. Yan, Z. Lai, J. Lin, Comb. Chem. High Throughput Screen. 20(5), 423–429 (2017). https://doi.org/10.2174/1386207320666170116141818

    Article  CAS  PubMed  Google Scholar 

  6. L. Ma, B. Wang, Y. Long, H. Li, Front. Med. 11(2), 191–202 (2017). https://doi.org/10.1007/s11684-017-0512-0

    Article  PubMed  Google Scholar 

  7. J.M. Alves-Silva, A. Romane, T. Efferth, L. Salgueiro, Front. Pharmacol. 8, 383 (2017). https://doi.org/10.3389/fphar.2017.00383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A. Tariq, S. Sadia, K. Pan, I. Ullah, S. Mussarat, F. Sun, O.O. Abiodun, A. Batbaatar, Z. Li, D. Song, Q. Xiong, Research 31(2), 202–264 (2017). https://doi.org/10.1002/ptr.5751

    Article  Google Scholar 

  9. C. Diorio, K. Salena, E.J. Ladas, C.G. Lam, G.M. Afungcwhi, F. Njuguna, S. Marjerrison, Pediatr. Blood Cancer 64(9), e26501 (2017). https://doi.org/10.1002/pbc.26501

    Article  Google Scholar 

  10. S. Bernardini, A. Tiezzi, V. Laghezza Masci, E. Ovidi, Nat. Prod. Res. 32(16), 1926–1950 (2018). https://doi.org/10.1080/14786419.2017.1356838

    Article  CAS  PubMed  Google Scholar 

  11. L. Katz, R.H. Baltz, J. Ind. Microbiol. Biotechnol. 43(2–3), 155–176 (2016). https://doi.org/10.1007/s10295-015-1723-5

    Article  CAS  PubMed  Google Scholar 

  12. S.Y. Gao, Y.F. Gong, Q.J. Sun, J. Bai, L. Wang, Z.Q. Fan, Y. Sun, Y.J. Su, J. Gang, Y.B. Ji, Molecules 20(3), 4290–4306 (2015). https://doi.org/10.3390/molecules20034290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Singh Bains, J. Singh, S.S. Kamboj, K.K. Nijjar, J.N. Agrewala, V. Kumar, A. Kumar, A.K. Saxena, Biochim. Biophys. Acta 1723(1–3), 163–174 (2005). https://doi.org/10.1016/j.bbagen.2005.02.006

    Article  CAS  PubMed  Google Scholar 

  14. K. Thakur, J. Singh, G. Rabbani, R.H. Khan, R. Hora, M. Kaur, Int. J. Biol. Macromol. 104(A), 1267–1279 (2017). https://doi.org/10.1016/j.ijbiomac.2017.06.123

    Article  CAS  PubMed  Google Scholar 

  15. D.K. Chanchal, S. Alok, S. Rashi, R.K. Bijauliya, R.D. Yadav, M. Sabharwal, Int. J. Pharm. Sci. Res. 9(4), 1424–1429 (2017)

    Google Scholar 

  16. D.G. Robertson, Toxicol. Sci. 85(2), 809–822 (2005). https://doi.org/10.1093/toxsci/kfi102

    Article  CAS  PubMed  Google Scholar 

  17. R. Fernie, R.N. Trethewey, A.J. Krotzky, L. Willmitzer, Nat. Rev. Mol. Cell Biol. 5(9), 763–769 (2004). https://doi.org/10.1038/nrm1451

    Article  CAS  PubMed  Google Scholar 

  18. W.-X. Liu, Y.-J. Zhang, M. Zhou, P. Zhao, Phytochem. Lett. 46, 66–70 (2021). https://doi.org/10.1016/j.phytol.2021.09.006

    Article  CAS  Google Scholar 

  19. D.J. Osguthorpe, W. Sherman, A.T. Hagler, Chem. Biol. Drug Des. 80(2), 182–193 (2012). https://doi.org/10.1111/j.1747-0285.2012.01396.x

    Article  CAS  PubMed  Google Scholar 

  20. M. Sastry, J.F. Lowrie, S.L. Dixon, W. Sherman, J. Chem. Inf. Model. 50(5), 771–784 (2010). https://doi.org/10.1021/ci100062n

    Article  CAS  PubMed  Google Scholar 

  21. J. Singh, C.E. Chuaqui, P.A. Boriack-Sjodin, W.C. Lee, T. Pontz, M.J. Corbley, H.K. Cheung, R.M. Arduini, J.N. Mead, M.N. Newman, J.L. Papadatos, Bioorg. Med. Chem. Lett. 13(24), 4355–4359 (2003). https://doi.org/10.1016/j.bmcl.2003.09.028

    Article  CAS  PubMed  Google Scholar 

  22. P. K. Sarkar, Evaluation of Shodhana process and antidotal study on Vatsanabha, (Gujarat Ayurved University, Jamnagar, India, PhD diss. 2008)

  23. M. Chaturvedi, R. Patel, R. Saraswat, ISSN 2249, 2976, 9(1), 383–387 (2019)

  24. M. Kavit, B. N. Patel, B. K. Jain, Res. J. Recent Sci. ISSN 2277, 2502 (2013).

  25. S. Bhat, G.S. Mulgund, S. Hegde, H.V. Hegde, J. Pharmacogn. Phytochem. 8(1), 1608–1615 (2019)

    CAS  Google Scholar 

  26. T.S.B. Baul, P. Kehie, A. Duthie, N. Guchhait, N. Raviprakash, R.B. Mokhamatam, S.K. Manna, N. Armata, M. Scopelliti, R. Wang, U. Englert, J. Inorg. Biochem. 168, 76–89 (2017). https://doi.org/10.1016/j.jinorgbio.2016.12.001

    Article  CAS  Google Scholar 

  27. S.Y. Gao, J. Li, X.Y. Qu, N. Zhu, Y.B. Ji, Asian Pac. J. Cancer Prev. 15(15), 6437–6441 (2014). https://doi.org/10.7314/APJCP.2014.15.15.6437

    Article  PubMed  Google Scholar 

  28. E. Maioli, C. Torricelli, V. Fortino, F. Carlucci, V. Tommassini, A. Pacini, Biol. Proc. Online 11(1), 227–240 (2009). https://doi.org/10.1007/s12575-009-9020-1

    Article  CAS  Google Scholar 

  29. A. Jana, P. Brandão, G. Mondal, P. Bera, A. Santra, A.D. Jana, R.B. Mokhamatam, S.K. Manna, N. Bhattacharyya, Inorg. Chim. Acta 482, 621–634 (2018). https://doi.org/10.1016/j.ica.2018.06.054

    Article  CAS  Google Scholar 

  30. P. Kumar, A. Nagarajan, P.D. Uchil, Cold Spring Harb Protoc (2018). https://doi.org/10.1101/pdb.prot095497

    Article  PubMed  Google Scholar 

  31. S.A.S. Chatha, F. Anwar, M. Manzoor, Grasas Aceites 57(3), 328–335 (2006)

    CAS  Google Scholar 

  32. C.D. Stalikas, J. Sep. Sci. 30(18), 3268–3295 (2007). https://doi.org/10.1002/jssc.200700261

    Article  CAS  PubMed  Google Scholar 

  33. C. Santos-Buelga, C. García-Viguera, F.A. Tomás-Barberán, Methods Polyphen Anal. 92, 127 (2003)

    Google Scholar 

  34. A. Marston, K. Hostettmann, Flavonoids Chem. Biochem. Appl., 1–36 (2006).

  35. S.K. Malik, M. Ahmed, F. Khan, J. Pharm. Res. 17(4), 661–668 (2018). https://doi.org/10.4314/tjpr.v17i4.14

    Article  CAS  Google Scholar 

  36. Z.J. Zhan, S. Li, W. Chu, S. Yin, Nat. Prod. Rep. 39(11), 2132–2174 (2022). https://doi.org/10.1039/D2NP00047D

    Article  CAS  PubMed  Google Scholar 

  37. S.S. El-Hawary, R. Mohammed, A.F. Tawfike, N.M. Lithy, S.F. AbouZid, M.N. Amin, U.R. Abdelmohsen, E. Amin, Metabolites 11(1), 15 (2020). https://doi.org/10.3390/metabo11010015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. H.B. Sharif, M.D. Mukhtar, Y. Mustapha, A.O. Lawal, Adv. Pharm. 2015, 1 (2015)

    Google Scholar 

  39. F.R. Yu, X.Z. Lian, H.Y. Guo, P.M. McGuire, R.D. Li, R. Wang, F.H. Yu, J. Pharm. Pharm. Sci. 8(3), 528–535 (2005)

    CAS  PubMed  Google Scholar 

  40. Y. Mizushina, N. Tanaka, H. Yagi, T. Kurosawa, M. Onoue, H. Seto, T.I. Horie, N. Aoyagi, M. Yamaoka, A. Matsukage, S. Yoshida, Biochim. Biophys. Acta 1308(3), 256–262 (1996). https://doi.org/10.1016/0167-4781(96)00121-2

    Article  PubMed  Google Scholar 

  41. S. Jamuna, S. Paulsamy, Int. J. Curr. Res. 5(12), 4070–4074 (2013)

    Google Scholar 

  42. D.H. Kim, M.H. Park, Y.J. Choi, K.W. Chung, C.H. Park, E.J. Jang, H.J. An, B.P. Yu, H.Y. Chung, PLoS ONE 8(3), e59316 (2013). https://doi.org/10.1371/journal.pone.0059316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. G. Sethi, B. Sung, A. B. Kunnumakkara, B. B. Aggarwal, (Springer, Ther. Targets TNF Superfamily, 2009), pp. 37–51.

  44. M.J. Eck, S.R. Sprang, J. Biol. Chem. 264(29), 17595–17605 (1989). https://doi.org/10.2210/pdb1tnf/pdb

    Article  CAS  PubMed  Google Scholar 

  45. H.T. Idriss, J.H. Naismith, Microsc. Res. Tech. 50(3), 184–195 (2000)

    Article  CAS  PubMed  Google Scholar 

  46. O.T.P. Kim, M.D. Le, H.X. Trinh, H.V. Nong, Biophys. Physicobiol. 13, 173–180 (2016). https://doi.org/10.2142/biophysico.13.0_173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to the Guru Ghasidas Vishwavidyalaya and Central Council for Research in Ayurveda Science (CCRAS), New Delhi, for supporting the research work, Mr. Puran Chabbaria of Aarpaa Sone Paryavaran Samiti, Pendra, (C.G.) for providing plant tuber samples, Sophisticated Analysis Facility (SAIF), IIT Bombay, for carrying out GC–HRMS analysis.

Funding

Guru Ghasidas Central Vishwavidyalaya (GGV) Bilaspur (C.G.), Central Council for Research in Ayurvedic Science (CCRAS), New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

NK: conceptualization, methodology, resources, investigation, and writing—manuscript. PM: in silico study, Investigation. Dr. RS: writing—reviewing and editing, supervision, approval of the final version of the manuscript. Dr. RB: supervision.

Corresponding author

Correspondence to Rohit Seth.

Ethics declarations

Conflict of interest

For all the authors, there is no potential conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 79 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahar, N., Mishra, P., Bhatt, R. et al. Chemical characterization of the crude extract of Sauromatum venosum (voodoo lily) and docking study with 12-O-acetylingol 8-tiglate for cytotoxicity testing in SaOS2 (osteoblastic osteosarcoma cells). ANAL. SCI. 40, 151–162 (2024). https://doi.org/10.1007/s44211-023-00441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00441-2

Keywords

Navigation