Skip to main content

Advertisement

Log in

Stiffened tumor microenvironment enhances perineural invasion in breast cancer via integrin signaling

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Accumulating studies have shown that tumors are regulated by nerves, and there is abundant nerve infiltration in the tumor microenvironment. Many solid tumors including breast cancer (BRCA) have different degrees of perineural invasion (PNI), which is closely related to the tumor occurrence and progression. However, the regulatory mechanism of PNI in BRCA remains largely unexplored.

Methods

PNI-related molecular events are analyzed by the RNAseq data of BRCA samples deposited in The Cancer Genome Atlas (TCGA) database. Extracellular matrix (ECM) components within the tumor microenvironment are analyzed by immunohistochemical staining of α-SMA, Sirius red staining, and Masson trichrome staining. Soft and stiff matrix gels, living cell imaging, and dorsal root ganglion (DRG) coculture assay are used to monitor cancer cell invasiveness towards nerves. Western blotting, qRT-PCR, enzyme-linked immunosorbent assay combined with neutralizing antibody and small molecular inhibitors are employed to decode molecular mechanisms.

Results

Comparative analysis that the ECM was significantly associated with PNI status in the TCGA cohort. BRCA samples with higher α-SMA activity, fibrillar collagen, and collagen content had higher frequency of PNI. Compared with soft matrix, BRCA cells cultured in stiff matrix not only displayed higher cell invasiveness to DRG neurons but also had significant neurotrophic effects. Mechanistically, integrin β1 was identified as a functional receptor to the influence of stiff matrix on BRCA cells. Moreover, stiffened matrix-induced activation of integrin β1 transduces FAK-YAP signal cascade, which enhances cancer invasiveness and the neurotrophic effects. In clinical setting, PNI-positive BRCA samples had higher expression of ITGB1, phosphorylated FAK, YAP, and NGF compared with PNI-negative BRCA samples.

Conclusions

Our findings suggest that stiff matrix induces expression of pro-metastatic and neurotrophic genes through integrin β1-FAK-YAP signals, which finally facilitates PNI in BRCA. Thus, our study provides a new mechanism for PNI in BRCA and highlights nerve-based tumor treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. B. March, S. Faulkner, P. Jobling, A. Steigler, A. Blatt, J. Denham, H. Hondermarck, Tumour innervation and neurosignalling in prostate cancer. Nat. Rev. Urol. 17, 119–130 (2020)

    Article  Google Scholar 

  2. A.H. Zahalka, P.S. Frenette, Nerves in cancer. Nat. Rev. Cancer 20, 143–157 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. U. Mehraj, R.A. Ganai, M.A. Macha, A. Hamid, M.A. Zargar, A.A. Bhat, M.W. Nasser, M. Haris, S.K. Batra, B. Alshehri, R.S. Al-Baradie, M.A. Mir, N.A. Wani, The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: new challenges and therapeutic opportunities. Cell. Oncol. (Dordr.) 44, 1209–1229 (2021)

    Article  PubMed  Google Scholar 

  4. J. Hu, W. Chen, L. Shen, Z. Chen, J. Huang, Crosstalk between the peripheral nervous system and breast cancer influences tumor progression. Biochim. Biophys. Acta Rev. Cancer 1877, 188828 (2022)

    Article  CAS  PubMed  Google Scholar 

  5. S.M. Gysler, R. Drapkin, Tumor innervation: peripheral nerves take control of the tumor microenvironment. J. Clin. Investig. 131, (2021)

  6. H.D. Reavis, H.I. Chen, R. Drapkin, Tumor innervation: cancer has some nerve, trends. Cancer 6, 1059–1067 (2020)

    CAS  Google Scholar 

  7. S.H. Jiang, L.P. Hu, X. Wang, J. Li, Z.G. Zhang, Neurotransmitters: emerging targets in cancer. Oncogene 39, 503–515 (2020)

    Article  CAS  PubMed  Google Scholar 

  8. B.W. Renz, R. Takahashi, T. Tanaka, M. Macchini, Y. Hayakawa, Z. Dantes, H.C. Maurer, X. Chen, Z. Jiang, C.B. Westphalen, M. Ilmer, G. Valenti, S.K. Mohanta, A.J.R. Habenicht, M. Middelhoff, T. Chu, K. Nagar, Y. Tailor, R. Casadei, M. Di Marco, A. Kleespies, R.A. Friedman, H. Remotti, M. Reichert, D.L. Worthley, J. Neumann, J. Werner, A.C. Iuga, K.P. Olive, T.C. Wang, beta2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell 33, 75-90 e77 (2018)

    Article  CAS  PubMed  Google Scholar 

  9. C.M. Zhao, Y. Hayakawa, Y. Kodama, S. Muthupalani, C.B. Westphalen, G.T. Andersen, A. Flatberg, H. Johannessen, R.A. Friedman, B.W. Renz, A.K. Sandvik, V. Beisvag, H. Tomita, A. Hara, M. Quante, Z. Li, M.D. Gershon, K. Kaneko, J.G. Fox, T.C. Wang, D. Chen, Denervation suppresses gastric tumorigenesis. Sci. Transl. Med. 6, 250ra115 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  10. N. Vaes, M. Idris, W. Boesmans, M.M. Alves, V. Melotte, Nerves in gastrointestinal cancer: from mechanism to modulations. Nat. Rev. Gastroenterol. Hepatol. 19, 768–784 (2022)

    Article  PubMed  Google Scholar 

  11. N. Erin, Role of sensory neurons, neuroimmune pathways, and transient receptor potential vanilloid 1 (TRPV1) channels in a murine model of breast cancer metastasis. Cancer Immunol. Immunother. 69, 307–314 (2020)

    Article  CAS  PubMed  Google Scholar 

  12. N. Bencze, C. Schvarcz, G. Kriszta, L. Danics, E. Szoke, P. Balogh, A. Szallasi, P. Hamar, Z. Helyes, B. Botz, Desensitization of capsaicin-sensitive afferents accelerates early tumor growth via increased vascular leakage in a murine model of triple negative breast cancer. Front. Oncol. 11, 685297 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Gatherwright, R. Knackstedt, Targeted breast re-innervation (TBR) for post-mastectomy pain. J. Plast. Reconstr. Aesthet. Surg. 72, 1700–1738 (2019)

    Article  PubMed  Google Scholar 

  14. M. Amit, S. Na’ara, Z. Gil, Mechanisms of cancer dissemination along nerves. Nat. Rev. Cancer 16, 399–408 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. C. Liebig, G. Ayala, J.A. Wilks, D.H. Berger, D. Albo, Perineural invasion in cancer: a review of the literature. Cancer 115, 3379–3391 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. K. Hosoya, M. Wakahara, K. Ikeda, Y. Umekita, Perineural invasion predicts unfavorable prognosis in patients with invasive breast cancer. Cancer Diagn. Progn. 3, 208–214 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  17. P. Narayan, J. Flynn, Z. Zhang, E.F. Gillespie, B. Mueller, A.J. Xu, J. Cuaron, B. McCormick, A.J. Khan, O. Cahlon, S.N. Powell, H. Wen, L.Z. Braunstein, Perineural invasion as a risk factor for locoregional recurrence of invasive breast cancer. Sci. Rep. 11, 12781 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. F. Marchesi, L. Piemonti, A. Mantovani, P. Allavena, Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis. Cytokine Growth Factor Rev. 21, 77–82 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. W.K. Cowan, P. Kelly, A. Sawan, W.J. Cunliffe, L. Henry, M.J. Higgs, L.G. Lunt, J.R. Young, C.H. Horne, B. Angus, The pathological and biological nature of screen-detected breast carcinomas: a morphological and immunohistochemical study. J. Pathol. 182, 29–35 (1997)

    Article  CAS  PubMed  Google Scholar 

  20. Y. Jiang, H. Zhang, J. Wang, Y. Liu, T. Luo, H. Hua, Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J. Hematol. Oncol. 15, 34 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  21. M. Najafi, B. Farhood, K. Mortezaee, Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J. Cell. Biochem. 120, 2782–2790 (2019)

    Article  CAS  PubMed  Google Scholar 

  22. V. Mohan, A. Das, I. Sagi, Emerging roles of ECM remodeling processes in cancer. Semin. Cancer Biol. 62, 192–200 (2020)

    Article  CAS  PubMed  Google Scholar 

  23. C. Bonnans, J. Chou, Z. Werb, Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O. Chaudhuri, J. Cooper-White, P.A. Janmey, D.J. Mooney, V.B. Shenoy, Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. A. Hupfer, A. Brichkina, A. Koeniger, C. Keber, C. Denkert, P. Pfefferle, F. Helmprobst, A. Pagenstecher, A. Visekruna, M. Lauth, Matrix stiffness drives stromal autophagy and promotes formation of a protumorigenic niche. Proc. Natl. Acad. Sci. U. S. A. 118, (2021)

  26. K.R. Levental, H. Yu, L. Kass, J.N. Lakins, M. Egeblad, J.T. Erler, S.F. Fong, K. Csiszar, A. Giaccia, W. Weninger, M. Yamauchi, D.L. Gasser, V.M. Weaver, Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. K. Yoshihara, M. Shahmoradgoli, E. Martinez, R. Vegesna, H. Kim, W. Torres-Garcia, V. Trevino, H. Shen, P.W. Laird, D.A. Levine, S.L. Carter, G. Getz, K. Stemke-Hale, G.B. Mills, R.G.W. Verhaak, Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, (2013)

  28. Z. Gil, O. Cavel, K. Kelly, P. Brader, A. Rein, S.P. Gao, D.L. Carlson, J.P. Shah, Y. Fong, R.J. Wong, Paracrine regulation of pancreatic cancer cell invasion by peripheral nerves. J. Natl. Cancer Inst. 102, 107–118 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A. Samani, J. Zubovits, D. Plewes, Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys. Med. Biol. 52, 1565–1576 (2007)

    Article  PubMed  Google Scholar 

  30. R.S. Banh, D.E. Biancur, K. Yamamoto, A.S.W. Sohn, B. Walters, M. Kuljanin, A. Gikandi, H. Wang, J.D. Mancias, R.J. Schneider, M.E. Pacold, A.C. Kimmelman, Neurons release serine to support mRNA translation in pancreatic cancer. Cell 183, 1202-1218 e1225 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  31. L. Lorenzini, V.A. Baldassarro, A. Stanzani, L. Giardino, Nerve growth factor: the first molecule of the neurotrophin family. Adv. Exp. Med. Biol. 1331, 3–10 (2021)

    Article  CAS  PubMed  Google Scholar 

  32. J.Z. Kechagia, J. Ivaska, P. Roca-Cusachs, Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20, 457–473 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. X. Chen, S. Wanggou, A. Bodalia, M. Zhu, W. Dong, J.J. Fan, W.C. Yin, H.K. Min, M. Hu, D. Draghici, W. Dou, F. Li, F.J. Coutinho, H. Whetstone, M.M. Kushida, P.B. Dirks, Y. Song, C.C. Hui, Y. Sun, L.Y. Wang, X. Li, X. Huang, A feedforward mechanism mediated by mechanosensitive ion channel PIEZO1 and tissue mechanics promotes glioma aggression. Neuron 100, 799-815 e797 (2018)

    Article  CAS  PubMed  Google Scholar 

  34. T. Zhou, B. Gao, Y. Fan, Y. Liu, S. Feng, Q. Cong, X. Zhang, Y. Zhou, P.S. Yadav, J. Lin, N. Wu, L. Zhao, D. Huang, S. Zhou, P. Su, Y. Yang, Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-ss-catenin. Elife 9, (2020)

  35. S. Li, C. Li, Y. Zhang, X. He, X. Chen, X. Zeng, F. Liu, Y. Chen, J. Chen, Targeting mechanics-induced fibroblast activation through CD44-RhoA-YAP pathway ameliorates crystalline silica-induced silicosis. Theranostics 9, 4993–5008 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. Dupont, Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp. Cell Res. 343, 42–53 (2016)

    Article  CAS  PubMed  Google Scholar 

  37. S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. Le Digabel, M. Forcato, S. Bicciato, N. Elvassore, S. Piccolo, Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. A.A. Bapat, G. Hostetter, D.D. Von Hoff, H. Han, Perineural invasion and associated pain in pancreatic cancer. Nat. Rev. Cancer 11, 695–707 (2011)

    Article  CAS  PubMed  Google Scholar 

  39. J.J. Northey, A.S. Barrett, I. Acerbi, M.K. Hayward, S. Talamantes, I.S. Dean, J.K. Mouw, S.M. Ponik, J.N. Lakins, P.J. Huang, J. Wu, Q. Shi, S. Samson, P.J. Keely, R.A. Mukhtar, J.T. Liphardt, J.A. Shepherd, E.S. Hwang, Y.Y. Chen, K.C. Hansen, L.E. Littlepage, V.M. Weaver, Stiff stroma increases breast cancer risk by inducing the oncogene ZNF217. J. Clin. Investig. 130, 5721–5737 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. A.J. Berger, C.M. Renner, I. Hale, X. Yang, S.M. Ponik, P.S. Weisman, K.S. Masters, P.K. Kreeger, Scaffold stiffness influences breast cancer cell invasion via EGFR-linked Mena upregulation and matrix remodeling. Matrix Biol. 85–86, 80–93 (2020)

    Article  PubMed  Google Scholar 

  41. D. Ngai, M. Lino, K.E. Rothenberg, C.A. Simmons, R. Fernandez-Gonzalez, M.P. Bendeck, DDR1 (Discoidin Domain Receptor-1)-RhoA (Ras Homolog Family Member A) axis senses matrix stiffness to promote vascular calcification. Arterioscler. Thromb. Vasc. Biol. 40, 1763–1776 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. T. Uchihara, K. Miyake, A. Yonemura, Y. Komohara, R. Itoyama, M. Koiwa, T. Yasuda, K. Arima, K. Harada, K. Eto, H. Hayashi, M. Iwatsuki, S. Iwagami, Y. Baba, N. Yoshida, M. Yashiro, M. Masuda, J.A. Ajani, P. Tan, H. Baba, T. Ishimoto, Extracellular vesicles from cancer-associated fibroblasts containing annexin A6 induces FAK-YAP activation by stabilizing beta1 integrin, enhancing drug resistance. Can. Res. 80, 3222–3235 (2020)

    Article  CAS  Google Scholar 

  43. A. Bagati, S. Kumar, P. Jiang, J. Pyrdol, A.E. Zou, A. Godicelj, N.D. Mathewson, A.N.R. Cartwright, P. Cejas, M. Brown, A. Giobbie-Hurder, D. Dillon, J. Agudo, E.A. Mittendorf, X.S. Liu, K.W. Wucherpfennig, Integrin alphavbeta6-TGFbeta-SOX4 pathway drives immune evasion in triple-negative breast cancer. Cancer Cell 39, 54-67 e59 (2021)

    Article  CAS  PubMed  Google Scholar 

  44. M.F. Pang, M.J. Siedlik, S. Han, M. Stallings-Mann, D.C. Radisky, C.M. Nelson, Tissue stiffness and hypoxia modulate the integrin-linked kinase ILK to control breast cancer stem-like cells. Can. Res. 76, 5277–5287 (2016)

    Article  CAS  Google Scholar 

  45. D.C. Rigiracciolo, N. Nohata, R. Lappano, F. Cirillo, M. Talia, S.R. Adame-Garcia, N. Arang, S. Lubrano, E.M. De Francesco, A. Belfiore, J.S. Gutkind, M. Maggiolini, Focal Adhesion Kinase (FAK)-Hippo/YAP transduction signaling mediates the stimulatory effects exerted by S100A8/A9-RAGE system in triple-negative breast cancer (TNBC). J. Exp. Clin. Cancer Res. 41, 193 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. G. Centonze, D. Natalini, V. Salemme, A. Costamagna, S. Cabodi, P. Defilippi, p130Cas/BCAR1 and p140Cap/SRCIN1 adaptors: the Yin Yang in breast cancer? Front. Cell Dev. Biol. 9, 729093 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by National Natural Science Youth Foundation of China (Grant Nos. 82203558) and Natural Science Foundation of Jilin Provincial Department of science and technology (20210401057YY).

Author information

Authors and Affiliations

Authors

Contributions

BH, XG, M-YM, B-LL, LL-R, and Y-TL performed clinical analysis, in vitro cell experiments, manuscript preparation, and statistical analysis; YD contributed to bioinformatics analysis; SD and S-HJ, conceived, designed, supervised, analyzed and interpreted the study and provided critical review.

Corresponding author

Correspondence to Dong Song.

Ethics declarations

Ethical approval

This study was approved by the ethics committee of The First Hospital of Jilin University.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 577 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Guan, X., Ma, M. et al. Stiffened tumor microenvironment enhances perineural invasion in breast cancer via integrin signaling. Cell Oncol. (2023). https://doi.org/10.1007/s13402-023-00901-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13402-023-00901-x

Keywords

Navigation