Skip to main content
Log in

Particle flow characteristics in a gas–solid fluidized bed: a microscopic perspective by coupled CFD–DEM approach

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

In a dense gas–solid fluidized bed, the microscopic quantities, including forces and energy of particles, directly determine their macroscopic motion in space. In this work, the CFD–DEM coupling approach is used to detect the energy evolution and the effect of fluid forces on the particles using a microscopic perspective. The numerical simulation accuracy of CFD–DEM to predict the macroscopic motion behavior of the particles was validated by carrying out high-speed photographic tests. The results showed that the drag force positively correlates with the inlet flow rate and particle diameter, where it exists only near the inlet. In the axial position of the fluidized bed near the inlet, the tangential contact force is significantly dominant, while an effect of a small proportion of particles with a normal contact force (> 0.1N) is founded. Under different operating conditions, the fluid pressure gradient force can be neglected at a position greater than two times the inlet length where a convex curve shape is formed. In addition, the particle energy is positively correlated with the inlet flow rate and the particle diameter, where the existing bubble formation causes energy fluctuations. This study reveals the microscopic mechanism of gas–solid interaction and provides theoretical guidance for the optimal design of fluidized bed structure and improvement of mathematical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

ρ f :

Fluid density

ρ p :

Particle density

m p :

Particle mass

u p :

Particle translational velocity

I :

Inertia tensor

ω :

Angular velocity vector

F c :

Contact force

F fp :

Particle–fluid interaction force

g :

Gravitational acceleration

T c :

Torque

T fp :

Additional torque

u f :

Gas velocity

p :

Share pressure

τ f :

Molecular viscous stress tensor

V grid :

CFD volume grid

V p :

Volume of particles located in the local grid

\(\nabla {\varvec{u}}_{f}\) :

Turbulent viscosity coefficient

\({\varvec{F}}_{n}^{t}\) :

Normal contact forces

\(\Delta S_{n}\) :

The difference between the normal overlap

K nl :

Loaded contact stiffness

K nu :

Unloaded contact stiffness

\({\varvec{F}}_{\tau ,e}^{t}\) :

Elastic frictional force

K t :

Tangential stiffness

\(\Upsilon_{K}\) :

Tangential stiffness ratio

F d :

Drag force

\({\varvec{F}}_{\nabla p}\) :

Pressure gradient force

F V :

Virtual mass force

F L :

Lift force

F other :

Other force

C D :

Drag coefficient

ψ :

Particle sphericity

e :

Coefficient of restitution

d :

Particle diameter

Q m :

Inlet flow rate

E work :

Energy for work done

E kinetic :

Kinetic energy

E rotational :

Potential energy

E potential :

Rotational energy

W diss k :

Dissipative work

W diss k,c :

Collision dissipation work

W diss k,r :

Rolling resistance dissipation work

v rel c :

Relative velocity

ω rel c :

Relative angular velocity

M r :

Rolling resistance moment

References

  1. Di Renzo A, Napolitano E, Di Maio F (2021) Coarse-grain DEM modelling in fluidized bed simulation: a review. Processes 9(2):279

    Article  Google Scholar 

  2. Ma H, Xu L, Zhao Y (2017) CFD-DEM simulation of fluidization of rod-like particles in a fluidized bed. Powder Technol 314:355–366

    Article  Google Scholar 

  3. Sarra SA (2003) Chebyshev super spectral viscosity method for a fluidized bed model. J Comput Phys 186(2):630–651

    Article  MATH  Google Scholar 

  4. Zhou L, Lv W, Bai L, Han Y, Wang J, Shi W, Huang G (2022) CFD–DEM study of gas–solid flow characteristics in a fluidized bed with different diameter of coarse particles. Energy Rep 8:2376–2388

    Article  Google Scholar 

  5. Xie J, Zhong W, Jin B, Shao Y, Liu H (2014) Three-dimensional Eulerian-Eulerian modeling of gaseous pollutant emissions from circulating fluidized-bed combustors. Energy Fuels 28(8):5523–5533

    Article  Google Scholar 

  6. Xue Q, Dalluge D, Heindel TJ, Fox RO, Brown RC (2012) Experimental validation and CFD modeling study of biomass fast pyrolysis in fluidized-bed reactors. Fuel 97:757–769

    Article  Google Scholar 

  7. Boateng AA, Mtui PL (2012) CFD modeling of space-time evolution of fast pyrolysis products in a bench-scale fluidized-bed reactor. Appl Therm Eng 33–34:190–198

    Article  Google Scholar 

  8. Li HW, Wang L, Wang T, Du C (2020) Experimental and CFD-DEM numerical evaluation of flow and heat transfer characteristics in mixed pulsed fluidized beds. Adv Powder Technol 31(8):3144–3157

    Article  Google Scholar 

  9. Han C, Bai L, Zhou C, Sun W, Zhou L (2022) CFD–DEM simulation and experimental study of flow pattern transition in a rectangular spouted bed. Powder Technol 2022:399

    Google Scholar 

  10. El-Emam MA, Zhou L, Shi W, Han C, Bai L, Agarwal R (2021) Theories and applications of CFD–DEM coupling approach for granular flow: a review. Arch Comput Methods Eng 28(7):4979–5020

    Article  MathSciNet  Google Scholar 

  11. Deen NG, Van Sint Annaland M, Van der Hoef MA, Kuipers JAM (2007) Review of discrete particle modeling of fluidized beds. Chem Eng Sci 62(1–2):28–44

    Article  MATH  Google Scholar 

  12. Cui X, Harris M, Howarth M, Zealey D, Brown R, Shepherd J (2022) Granular flow around a cylindrical obstacle in an inclined chute. Phys Fluids 34(9):093308

    Article  Google Scholar 

  13. Bai L, Han C, Xu Y, Zhou L, Zhang L, Shi W (2021) Numerical simulation and experimental study of CFD-DEM in bubbling fluidized bed based on different drag models. J Drain Irrigat Mach Eng 40(1):50–55

    Google Scholar 

  14. Tian F, Zhang M, Fan H, Gu M, Wang L, Qi Y (2007) Numerical study on microscopic mixing characteristics in fluidized beds via DEM. Fuel Process Technol 88(2):187–198

    Article  Google Scholar 

  15. Zhang MH, Chu KW, Wei F, Yu AB (2008) A CFD–DEM study of the cluster behavior in riser and downer reactors. Powder Technol 184(2):151–165

    Article  Google Scholar 

  16. Wang W, Li J (2007) Simulation of gas–solid two-phase flow by a multi-scale CFD approach—of the EMMS model to the sub-grid level. Chem Eng Sci 62(1–2):208–231

    Article  Google Scholar 

  17. Wang X, Jiang F, Lei J, Wang J, Wang S, Xu X, Xiao Y (2011) A revised drag force model and the application for the gas–solid flow in the high-density circulating fluidized bed. Appl Therm Eng 31(14–15):2254–2261

    Article  Google Scholar 

  18. Kallio S, Peltola J, Niemi T (2014) Parametric study of the time-averaged gas–solid drag force in circulating fluidized bed conditions. Powder Technol 257:20–29

    Article  Google Scholar 

  19. Kallio S, Peltola J, Niemi T (2015) Analysis of the time-averaged gas–solid drag force based on data from transient 3D CFD simulations of fluidized beds. Powder Technol 274:227–238

    Article  Google Scholar 

  20. Agrawal K, Loezos PN, Syamlal M, Sundaresan S (2001) The role of meso-scale structures in rapid gas–solid flows. J Fluid Mech 445:151–185

    Article  MATH  Google Scholar 

  21. Igci Y, Andrews AT, Sundaresan S, Pannala S, O’Brien T (2008) Filtered two-fluid models for fluidized gas-particle suspensions. AIChE J 54(6):1431–1448

    Article  Google Scholar 

  22. Shah S, Ritvanen J, Hyppänen T, Kallio S (2013) Wall effects on space averaged two-fluid model equations for simulations of gas–solid flows in risers. Chem Eng Sci 89:206–215

    Article  Google Scholar 

  23. Wilde JD, Heynderickx GJ, Marin GB (2007) Filtered gas–solid momentum transfer models and their application to 3D steady-state riser simulations. Chem Eng Sci 62(18–20):5451–5457

    Article  Google Scholar 

  24. Ren B, Zhong W, Jin B, Yuan Z, Lu Y (2011) Modeling of gas-particle turbulent flow in spout-fluid bed by computational fluid dynamics with discrete element method. Chem Eng Technol 34(12):2059–2068

    Article  Google Scholar 

  25. Ren B, Zhong W, Jin B, Yuan Z, Lu Y (2011) Computational fluid dynamics (CFD)–discrete element method (DEM) simulation of gas-solid turbulent flow in a cylindrical spouted bed with a conical base. Energy Fuels 25(9):4095–4105

    Article  Google Scholar 

  26. Zhong W, Xiong Y, Yuan Z, Zhang M, DEM, (2006) simulation of gas–solid flow behaviors in spout-fluid bed. Chem Eng Sci 61(5):1571–1584

    Article  Google Scholar 

  27. Hjelmfelt A, Mockros L (1966) Motion of discrete particles in a turbulent fluid. Appl Sci Res 16(1):149–161

    Article  Google Scholar 

  28. Zhang Y, Zhao YM, Gao ZL, Duan CL, Xu J, Lu LQ, Wang JW, Ge W (2019) Experimental and Eulerian–Lagrangian–Lagrangian study of binary gas-solid flow containing particles of significantly different sizes. Renew Energ 136:193–201

    Article  Google Scholar 

  29. Hao ZH, Li XA, Lu HL, Liu GD, He YR, Wang SA, Xu PF (2010) Numerical simulation of particle motion in a gradient magnetically assisted fluidized bed. Powder Technol 203(3):555–564

    Article  Google Scholar 

  30. Yang SL, Wang H, Wei YG, Hu JH, Chew JW (2019) Eulerian–Lagrangian simulation of air-steam biomass gasification in a three-dimensional bubbling fluidized gasifier. Energy 181:1075–1093

    Article  Google Scholar 

  31. Le VT, Marot D, Rochim A, Bendahmane F, Nguyen HH (2018) Suffusion susceptibility investigation by energy-based method and statistical analysis. Can Geotech J 55(1):57–68

    Article  Google Scholar 

  32. Nguyen TT, Indraratna B (2022) Fluidization of soil under increasing seepage flow: an energy perspective through CFD-DEM coupling. Granul Matter 24(3):80

    Article  Google Scholar 

  33. Das HJ, Saikia R, Mahanta P (2020) Effects of spiral and cone angles on drying characteristics and energy consumption of fluidized bed paddy dryer. Drying Technol 40(5):852–863

    Article  Google Scholar 

  34. Soponronnarit S, Wetchacama S, Trutassanawin S, Jariyatontivait W (2001) Design, testing, and optimization of vibro-fluidized bed paddy dryer. Drying Technol 19(8):1891–1908

    Article  Google Scholar 

  35. Lu L, Xu J, Ge W, Yue Y, Liu X, Li J (2014) EMMS-based discrete particle method (EMMS–DPM) for simulation of gas–solid flows. Chem Eng Sci 120:67–87

    Article  Google Scholar 

  36. Alobaid F (2013) 3D modelling and simulation of reactive fluidized beds for conversion of biomass with discrete element method. Technische Universität Darmstadt, Darmstadt

    Google Scholar 

  37. Napolitano ES, Di Renzo A, Di Maio FP (2022) Coarse-grain DEM-CFD modelling of dense particle flow in gas-solid cyclone. Sep Purif Technol 287:1205

    Article  Google Scholar 

  38. Lu LQ, Xu YP, Li TW, Benyahia S (2018) Assessment of different coarse graining strategies to simulate polydisperse gas-solids flow. Chem Eng Sci 179:53–63

    Article  Google Scholar 

  39. Wang S, Luo K, Hu CS, Lin JJ, Fan JR (2019) CFD-DEM simulation of heat transfer in fluidized beds: model verification, validation, and application. Chem Eng Sci 197:280–295

    Article  Google Scholar 

  40. Sakai M, Abe M, Shigeto Y, Mizutani S, Takahashi H, Vire A, Percival JR, Xiang JS, Pain CC (2014) Verification and validation of a coarse grain model of the DEM in a bubbling fluidized bed. Chem Eng J 244:33–43

    Article  Google Scholar 

  41. Zhao Z, Zhou L, Bai L, Lv W, Agarwal RK (2023) Effects of particle diameter and inlet flow rate on gas–solid flow patterns of fluidized bed. ACS Omega 8:7151–7162

    Article  Google Scholar 

  42. Alobaid F, Epple B (2013) Improvement, validation and application of CFD/DEM model to dense gas–solid flow in a fluidized bed. Particuology 11(5):514–526

    Article  Google Scholar 

  43. Luo K, Tan JH, Wang ZL, Fan JR (2016) Particle-resolved direct numerical simulation of gas-solid dynamics in experimental fluidized beds. AIChE J 62(6):1917–1932

    Article  Google Scholar 

  44. Tang Y, Lau YM, Deen NG, Peters EAJF, Kuipers JAM (2016) Direct numerical simulations and experiments of a pseudo-2D gas-fluidized bed. Chem Eng Sci 143:166–180

    Article  Google Scholar 

  45. van der Hoef MA, van Sint Annaland M, Deen NG, Kuipers JAM (2008) Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu Rev Fluid Mech 40(1):47–70

    Article  MathSciNet  MATH  Google Scholar 

  46. Walton OR, Braun RL (1986) Stress calculations for assemblies of inelastic speres in uniform shear. Acta Mech 63(1):73–86

    Article  Google Scholar 

  47. ESSS-Rocky, Rocky-dem technical manual. Rocky, E. (Ed.) (2018)

  48. Thornton C, Cummins SJ, Cleary PW (2011) An investigation of the comparative behaviour of alternative contact force models during elastic collisions. Powder Technol 210(3):189–197

    Article  Google Scholar 

  49. Bathurst RJ, Rothenburg L (1988) Micromechanical aspects of isotropic granular assemblies with linear contact interactions. J Appl Mech 55(1):17

    Article  Google Scholar 

  50. Inc, A., ANSYS Fluent Theory Guide16.0

  51. Peng ZB, Doroodchi E, Luo CM, Moghtaderi B (2014) Influence of void fraction calculation on fidelity of CFD-DEM simulation of gas-solid bubbling fluidized beds. AIChE J 60(6):2000–2018

    Article  Google Scholar 

  52. Lu HL, Gidaspow D (2003) Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures. Chem Eng Sci 58(16):3777–3792

    Article  Google Scholar 

  53. Yang JC, Low YM, Lee CH, Chiew YM (2018) Numerical simulation of scour around a submarine pipeline using computational fluid dynamics and discrete element method. Appl Math Model 55:400–416

    Article  MathSciNet  MATH  Google Scholar 

  54. Han Y, Zhou L, Bai L, Shi W, Agarwal R (2021) Comparison and validation of various turbulence models for U-bend flow with a magnetic resonance velocimetry experiment. Phys Fluids 33(12):125117

    Article  Google Scholar 

  55. Tavares LM, André FP, Potapov A, Maliska C (2020) Adapting a breakage model to discrete elements using polyhedral particles. Powder Technol 362:208–220

    Article  Google Scholar 

  56. de Almeida E, Spogis N, Taranto OP, Silva MA (2019) Theoretical study of pneumatic separation of sugarcane bagasse particles. Biomass Bioenergy 127:105256

    Article  Google Scholar 

  57. Lvov V, Chitalov L (2021) Semi-autogenous wet grinding modeling with CFD-DEM. Minerals 11(5):485

    Article  Google Scholar 

  58. Katinas E, Choteborsky R (2022) Volume/shear work ratio influence on wear and stress of soil chisel tine modelled by DEM. Proc Inst Mech Eng Part J J Eng Tribol 236(10):1985–1992

    Article  Google Scholar 

  59. Ma H, Zhou L, Liu Z, Chen M, Xia X, Zhao Y (2022) A review of recent development for the CFD-DEM investigations of non-spherical particles. Powder Technol 412:117972

    Article  Google Scholar 

  60. Zhao Z, Zhou L, Bai L, Wang B, Agarwal R (2023) Recent advances and perspectives of CFD–DEM simulation in fluidized bed. Arch Comput Methods Eng 2023:1–48

    Google Scholar 

  61. Malone KF, Xu BH (2008) Determination of contact parameters for discrete element method simulations of granular systems. Particuology 6(6):521–528

    Article  Google Scholar 

  62. Raman R, Mollick PK, Goswami PS (2022) Numerical Studies on Particle Dynamics in a Spouted Bed. Ind Eng Chem Res 61(1):894–913

    Article  Google Scholar 

  63. Wu W, Duan L, Li L, Liu D (2022) Investigation on a single char particle movement behavior in a bubbling fluidized bed under high temperature. Fuel Process Technol 236:107412

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52079058), Nature Science Foundation for Outstanding Young Scholars of Jiangsu Province (Grant No. BK20230011), Natural Science Foundation of Jiangsu Province (Grant No. BK20220544), and China Postdoctoral Science Foundation (Grant No. 2023M731367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Bai, L., Shi, W. et al. Particle flow characteristics in a gas–solid fluidized bed: a microscopic perspective by coupled CFD–DEM approach. Comp. Part. Mech. (2023). https://doi.org/10.1007/s40571-023-00694-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40571-023-00694-8

Keywords

Navigation