Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

The Implication of Hypocretin in Drug Abuse and Arousal in the Brain Stem

Author(s): Masoumeh Kourosh-Arami*, Alireza Komaki and Masoumeh Gholami

Volume 30, Issue 12, 2023

Published on: 24 November, 2023

Page: [986 - 991] Pages: 6

DOI: 10.2174/0109298665266463231106065557

Price: $65

Abstract

Hypocretin (orexin, Hcrt) neurons located in the lateral hypothalamus (LH) project widely into the brain and are thus responsible for the physiological action of the hypocretin complex. Hypocretin is involved in both arousal and addiction, and brainstem areas such as the locus coeruleus (LC), paragigantocellularis (PGi), and dorsal raphe (DR) contribute to these functions. In the present review, we focus on the effect of Hcrt on drug abuse and arousal in the brainstem.

Keywords: Paragigantocellularis, raphe, hypocretin, reward, arousal, brain stem.

« Previous
Graphical Abstract
[1]
de Lecea, L.; Kilduff, T.S.; Peyron, C.; Gao, X.B.; Foye, P.E.; Danielson, P.E.; Fukuhara, C.; Battenberg, E.L.F.; Gautvik, V.T.; Bartlett, F.S., II; Frankel, W.N.; van den Pol, A.N.; Bloom, F.E.; Gautvik, K.M.; Sutcliffe, J.G. The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci., 1998, 95(1), 322-327.
[http://dx.doi.org/10.1073/pnas.95.1.322] [PMID: 9419374]
[2]
Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richardson, J.A.; Kozlowski, G.P.; Wilson, S.; Arch, J.R.S.; Buckingham, R.E.; Haynes, A.C.; Carr, S.A.; Annan, R.S.; McNulty, D.E.; Liu, W.S.; Terrett, J.A.; Elshourbagy, N.A.; Bergsma, D.J.; Yanagisawa, M. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 1998, 92(4), 573-585.
[http://dx.doi.org/10.1016/S0092-8674(00)80949-6] [PMID: 9491897]
[3]
Mieda, M.; Tsujino, N.; Sakurai, T. Differential roles of orexin receptors in the regulation of sleep/wakefulness. Front. Endocrinol., 2013, 4, 57.
[http://dx.doi.org/10.3389/fendo.2013.00057] [PMID: 23730297]
[4]
Harris, G.C.; Aston-Jones, G. Arousal and reward: A dichotomy in orexin function. Trends Neurosci., 2006, 29(10), 571-577.
[http://dx.doi.org/10.1016/j.tins.2006.08.002] [PMID: 16904760]
[5]
Aston-Jones, G.; Smith, R.J.; Sartor, G.C.; Moorman, D.E.; Massi, L.; Tahsili-Fahadan, P.; Richardson, K.A. Lateral hypothalamic orexin/hypocretin neurons: A role in reward-seeking and addiction. Brain Res., 2010, 1314, 74-90.
[http://dx.doi.org/10.1016/j.brainres.2009.09.106] [PMID: 19815001]
[6]
Smith, R.J.; See, R.E.; Aston-Jones, G. Orexin/hypocretin signaling at the orexin 1 receptor regulates cue-elicited cocaine-seeking. Eur. J. Neurosci., 2009, 30(3), 493-503.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06844.x] [PMID: 19656173]
[7]
Harris, G.C.; Wimmer, M.; Aston-Jones, G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature, 2005, 437(7058), 556-559.
[http://dx.doi.org/10.1038/nature04071] [PMID: 16100511]
[8]
Mavanji, V.; Perez-Leighton, C.E.; Kotz, C.M.; Billington, C.J.; Parthasarathy, S.; Sinton, C.M.; Teske, J.A. Promotion of wakefulness and energy expenditure by orexin-A in the ventrolateral preoptic area. Sleep, 2015, 38(9), 1361-1370.
[http://dx.doi.org/10.5665/sleep.4970] [PMID: 25845696]
[9]
Aston-Jones, G.; Smith, R.J.; Moorman, D.E.; Richardson, K.A. Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology, 2009, 56(Suppl 1), 112-121.
[http://dx.doi.org/10.1016/j.neuropharm.2008.06.060] [PMID: 18655797]
[10]
Saper, C.B.; Scammell, T.E.; Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature, 2005, 437(7063), 1257-1263.
[http://dx.doi.org/10.1038/nature04284] [PMID: 16251950]
[11]
Bailey, C.P.; Oldfield, S.; Llorente, J.; Caunt, C.J.; Teschemacher, A.G.; Roberts, L.; McArdle, C.A.; Smith, F.L.; Dewey, W.L.; Kelly, E.; Henderson, G. Involvement of PKCα and G-protein-coupled receptor kinase 2 in agonist-selective desensitization of µ-opioid receptors in mature brain neurons. Br. J. Pharmacol., 2009, 158(1), 157-164.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00140.x] [PMID: 19309357]
[12]
Ranjbar-Slamloo, Y.; Azizi, H.; Fathollahi, Y.; Semnanian, S. Orexin receptor type-1 antagonist SB-334867 inhibits the development of morphine analgesic tolerance in rats. Peptides, 2012, 35(1), 56-59.
[http://dx.doi.org/10.1016/j.peptides.2012.02.023] [PMID: 22421510]
[13]
Samani, F.; Arami, M.K. Repeated administration of orexin into the thalamic paraventricular nucleus inhibits the development of morphine-induced analgesia. Protein Pept. Lett., 2021.
[PMID: 34906051]
[14]
Aston-Jones, G.; Bloom, F.E. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci., 1981, 1(8), 876-886.
[http://dx.doi.org/10.1523/JNEUROSCI.01-08-00876.1981] [PMID: 7346592]
[15]
Berridge, C.W.; Foote, S.L. Enhancement of behavioral and electroencephalographic indices of waking following stimulation of noradrenergic β-receptors within the medial septal region of the basal forebrain. J. Neurosci., 1996, 16(21), 6999-7009.
[http://dx.doi.org/10.1523/JNEUROSCI.16-21-06999.1996] [PMID: 8824336]
[16]
Peyron, C.; Tighe, D.K.; van den Pol, A.N.; de Lecea, L.; Heller, H.C.; Sutcliffe, J.G.; Kilduff, T.S. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci., 1998, 18(23), 9996-10015.
[http://dx.doi.org/10.1523/JNEUROSCI.18-23-09996.1998] [PMID: 9822755]
[17]
CLON, I.M., to morphine and suppression of withdrawal response by clonidine. Nature, 1978, 276(9)
[18]
Foote, S.L.; Bloom, F.E.; Aston-Jones, G. Nucleus locus ceruleus: New evidence of anatomical and physiological specificity. Physiol. Rev., 1983, 63(3), 844-914.
[http://dx.doi.org/10.1152/physrev.1983.63.3.844] [PMID: 6308694]
[19]
Christie, M.J.; Williams, J.T.; North, R.A. Mechanisms of tolerance to opiates in locus coeruleus neurons. NIDA Res. Monogr., 1987, 78, 158-168.
[PMID: 2829019]
[20]
Caramia, M.; Romanov, R.A.; Sideromenos, S.; Hevesi, Z.; Zhao, M.; Krasniakova, M.; Xu, Z.Q.D.; Harkany, T.; Hökfelt, T.G.M. Neuronal diversity of neuropeptide signaling, including galanin, in the mouse locus coeruleus. Proc. Natl. Acad. Sci., 2023, 120(31), e2222095120.
[http://dx.doi.org/10.1073/pnas.2222095120] [PMID: 37487094]
[21]
Ross, J.A.; Van Bockstaele, E.J. The locus coeruleus-norepinephrine system in stress and arousal: Unraveling historical, current, and future perspectives. Front. Psychiatry, 2021, 11, 601519.
[http://dx.doi.org/10.3389/fpsyt.2020.601519] [PMID: 33584368]
[22]
Foster, S.L.; Galaj, E.; Karne, S.L.; Ferré, S.; Weinshenker, D. Cell-type specific expression and behavioral impact of galanin and GalR1 in the locus coeruleus during opioid withdrawal. Addict. Biol., 2021, 26(5), e13037.
[http://dx.doi.org/10.1111/adb.13037] [PMID: 33768673]
[23]
Luskin, A.T. A diverse network of pericoerulear neurons control arousal states. bioRxiv, 2022, 2022, 498327.
[http://dx.doi.org/10.1101/2022.06.30.498327]
[24]
Nikbakhtzadeh, M.; Ranjbar, H.; Moradbeygi, K.; Zahedi, E.; Bayat, M.; Soti, M.; Shabani, M. Cross-talk between the HPA axis and addiction-related regions in stressful situations. Heliyon, 2023, 9(4), e15525.
[http://dx.doi.org/10.1016/j.heliyon.2023.e15525] [PMID: 37151697]
[25]
Navarro-Zaragoza, J.; Martínez-Laorden, E.; Teruel-Fernández, F.J.; Gómez-Murcia, V.; Cánovas, A.; Milanés, M.V.; Laorden, M.L.; Almela, P. Naloxone-induced conditioned place aversion score and extinction period are higher in C57BL/6J morphine-dependent mice than in Swiss: Role of HPA axis. Pharmacol. Biochem. Behav., 2021, 201, 173106.
[http://dx.doi.org/10.1016/j.pbb.2021.173106] [PMID: 33444599]
[26]
Harris, G.C.; Williams, J.T. Transient homologous mu-opioid receptor desensitization in rat locus coeruleus neurons. J. Neurosci., 1991, 11(8), 2574-2581.
[http://dx.doi.org/10.1523/JNEUROSCI.11-08-02574.1991] [PMID: 1651377]
[27]
Fiorillo, C.D.; Williams, J.T. Opioid desensitization: Interactions with G-protein-coupled receptors in the locus coeruleus. J. Neurosci., 1996, 16(4), 1479-1485.
[http://dx.doi.org/10.1523/JNEUROSCI.16-04-01479.1996] [PMID: 8778299]
[28]
Arttamangkul, S.; Birdsong, W.; Williams, J.T. Does PKC activation increase the homologous desensitization of μ opioid receptors? Br. J. Pharmacol., 2015, 172(2), 583-592.
[http://dx.doi.org/10.1111/bph.12712] [PMID: 24697621]
[29]
Levitt, E.S.; Williams, J.T. Morphine desensitization and cellular tolerance are distinguished in rat locus ceruleus neurons. Mol. Pharmacol., 2012, 82(5), 983-992.
[http://dx.doi.org/10.1124/mol.112.081547] [PMID: 22914548]
[30]
Maldonado, R.; Koob, G.F. Destruction of the locus coeruleus decreases physical signs of opiate withdrawal. Brain Res., 1993, 605(1), 128-138.
[http://dx.doi.org/10.1016/0006-8993(93)91364-X] [PMID: 8467382]
[31]
Trivedi, P.; Yu, H.; MacNeil, D.J.; Van der Ploeg, L.H.T.; Guan, X.M. Distribution of orexin receptor mRNA in the rat brain. FEBS Lett., 1998, 438(1-2), 71-75.
[http://dx.doi.org/10.1016/S0014-5793(98)01266-6] [PMID: 9821961]
[32]
Greco, M.A.; Shiromani, P.J. Hypocretin receptor protein and mRNA expression in the dorsolateral pons of rats. Brain Res. Mol. Brain Res., 2001, 88(1-2), 176-182.
[http://dx.doi.org/10.1016/S0169-328X(01)00039-0] [PMID: 11295245]
[33]
Mousavi, Y.; Azizi, H.; Mirnajafi-Zadeh, J.; Javan, M.; Semnanian, S. Blockade of orexin type-1 receptors in locus coeruleus nucleus attenuates the development of morphine dependency in rats. Neurosci. Lett., 2014, 578, 90-94.
[http://dx.doi.org/10.1016/j.neulet.2014.06.038] [PMID: 24970749]
[34]
Kourosh-Arami, M.; Javan, M.; Semnanian, S. Inhibition of orexin receptor 1 contributes to the development of morphine dependence via attenuation of cAMP response element-binding protein and phospholipase Cβ3. J. Chem. Neuroanat., 2020, 108, 101801.
[http://dx.doi.org/10.1016/j.jchemneu.2020.101801] [PMID: 32404265]
[35]
Babasafari, M.; Kourosharami, M.; Behman, J.; Farhadi, M.; Komaki, A. Alteration of phospholipase C expression in rat visual cortical neurons by chronic blockade of orexin receptor 1. Int. J. Pept. Res. Ther., 2020, 26(3), 1485-1491.
[http://dx.doi.org/10.1007/s10989-019-09943-y]
[36]
Mousavi, Z.; Kourosh-Arami, M.; Mohsenzadegan, M.; Komaki, A. An immunohistochemical study of the effects of orexin receptor blockade on phospholipase C-β3 level in rat hippocampal dentate gyrus neurons. Biotech. Histochem., 2021, 96(3), 191-196.
[http://dx.doi.org/10.1080/10520295.2020.1778088] [PMID: 32580652]
[37]
Serkkola, E.; Hurme, M. Synergism between protein-kinase C and cAMP-dependent pathways in the expression of the interleukin-1β gene is mediated via the activator-protein-1 (AP-1) enhancer activity. Eur. J. Biochem., 1993, 213(1), 243-249.
[http://dx.doi.org/10.1111/j.1432-1033.1993.tb17754.x] [PMID: 8386622]
[38]
Van Bockstaele, E.J.; Menko, A.S.; Drolet, G. Neuroadaptive responses in brainstem noradrenergic nuclei following chronic morphine exposure. Mol. Neurobiol., 2001, 23(2-3), 155-172.
[http://dx.doi.org/10.1385/MN:23:2-3:155] [PMID: 11817217]
[39]
Kourosh-Arami, M.; Joghataei, M.T.; Komaki, A.; Gholami, M.; Najafi, Z.; Lavaie, M. Persistent effects of the orexin-1 receptor antagonist SB-334867 on naloxone precipitated morphine withdrawal symptoms and nociceptive behaviors in morphine dependent rats. Int. J. Neurosci., 2022, 132(1), 67-76.
[http://dx.doi.org/10.1080/00207454.2020.1802266] [PMID: 32746675]
[40]
Babaie, F.; Kourosh-Arami, M.; Farhadi, M. Administration of Orexin-A into the rat thalamic paraventricular nucleus enhances the naloxone induced morphine withdrawal. Drug Res., 2022, 72(4), 209-214.
[http://dx.doi.org/10.1055/a-1744-5868] [PMID: 35385881]
[41]
Rezaei, Z.; Kourosh-Arami, M.; Azizi, H.; Semnanian, S. Orexin type-1 receptor inhibition in the rat lateral paragigantocellularis nucleus attenuates development of morphine dependence. Neurosci. Lett., 2020, 724, 134875.
[http://dx.doi.org/10.1016/j.neulet.2020.134875] [PMID: 32114118]
[42]
Arami, M.K.; Hajizadeh, S.; Semnanian, S. Postnatal development changes in excitatory synaptic activity in the rat locus coeruleus neurons. Brain Res., 2016, 1648(Pt A), 365-371.
[http://dx.doi.org/10.1016/j.brainres.2016.07.036] [PMID: 27449899]
[43]
Arami, M.K. Postnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat. Physiol. Pharmacol., 2011, 14(4), 337-348.
[44]
Fadel, J.; Deutch, A.Y. Anatomical substrates of orexin–dopamine interactions: Lateral hypothalamic projections to the ventral tegmental area. Neuroscience, 2002, 111(2), 379-387.
[http://dx.doi.org/10.1016/S0306-4522(02)00017-9] [PMID: 11983323]
[45]
Georgescu, D.; Zachariou, V.; Barrot, M.; Mieda, M.; Willie, J.T.; Eisch, A.J.; Yanagisawa, M.; Nestler, E.J.; DiLeone, R.J. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J. Neurosci., 2003, 23(8), 3106-3111.
[http://dx.doi.org/10.1523/JNEUROSCI.23-08-03106.2003] [PMID: 12716916]
[46]
Etaee, F.; Rezvani-Kamran, A.; Komaki, S.; Asadbegi, M.; Faraji, N.; Raoufi, S.; Taheri, M.; Kourosh-Arami, M.; Komaki, A. Effects of buprenorphine on the memory and learning deficit induced by methamphetamine administration in male rats. Front. Behav. Neurosci., 2021, 15, 748563.
[http://dx.doi.org/10.3389/fnbeh.2021.748563] [PMID: 34887733]
[47]
Zlebnik, N.E.; Holtz, N.A.; Lepak, V.C.; Saykao, A.T.; Zhang, Y.; Carroll, M.E. Age-specific treatment effects of orexin/hypocretin-receptor antagonism on methamphetamine-seeking behavior. Drug Alcohol Depend., 2021, 224, 108719.
[http://dx.doi.org/10.1016/j.drugalcdep.2021.108719] [PMID: 33940327]
[48]
Kourosh-Arami, M.; Gholami, M.; Alavi-Kakhki, S.S.; Komaki, A. Neural correlates and potential targets for the contribution of orexin to addiction in cortical and subcortical areas. Neuropeptides, 2022, 95, 102259.
[http://dx.doi.org/10.1016/j.npep.2022.102259] [PMID: 35714437]
[49]
Carter, M.E.; Brill, J.; Bonnavion, P.; Huguenard, J.R.; Huerta, R.; de Lecea, L. Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc. Natl. Acad. Sci., 2012, 109(39), E2635-E2644.
[http://dx.doi.org/10.1073/pnas.1202526109] [PMID: 22955882]
[50]
Arami, M.K. The effect of hyperglycemia on nitric oxidergic neurons in nucleus tractus solitarius and blood pressure regulation in rats with induced diabetes. Iranian J. Diab. Lipid Dis., 2005, 4(3), E2.
[51]
Arami, M.K. The effect of nucleus tractus solitarius nitric oxidergic neurons on blood pressure in diabetic rats. Iran. Biomed. J., 2006, 10(1), 15-19.
[52]
Malakouti, S.M.; Kourosh Arami, M.; Sarihi, A.; Hajizadeh, S.; Behzadi, G.; Shahidi, S.; Komaki, A.; Heshmatian, B.; Vahabian, M. Reversible inactivation and excitation of nucleus raphe magnus can modulate tail blood flow of male Wistar rats in response to hypothermia. Iran. Biomed. J., 2008, 12(4), 203-208.
[PMID: 19079538]
[53]
Erami, E.; Azhdari-Zarmehri, H.; Ghasemi-Dashkhasan, E.; Esmaeili, M.H.; Semnanian, S. Intra-paragigantocellularis lateralis injection of orexin-A has an antinociceptive effect on hot plate and formalin tests in rat. Brain Res., 2012, 1478, 16-23.
[http://dx.doi.org/10.1016/j.brainres.2012.08.013] [PMID: 22906776]
[54]
Sharf, R.; Sarhan, M.; DiLeone, R.J. Orexin mediates the expression of precipitated morphine withdrawal and concurrent activation of the nucleus accumbens shell. Biol. Psychiatry, 2008, 64(3), 175-183.
[http://dx.doi.org/10.1016/j.biopsych.2008.03.006] [PMID: 18423425]
[55]
Ahmadi-Soleimani, S.M.; Ghaemi-Jandabi, M.; Azizi, H.; Semnanian, S. Orexin type 1 receptor antagonism in Lateral Paragigantocellularis nucleus attenuates naloxone precipitated morphine withdrawal symptoms in rats. Neurosci. Lett., 2014, 558, 62-66.
[http://dx.doi.org/10.1016/j.neulet.2013.10.064] [PMID: 24211689]
[56]
Azizi, H.; Mirnajafi-Zadeh, J.; Rohampour, K.; Semnanian, S. Antagonism of orexin type 1 receptors in the locus coeruleus attenuates signs of naloxone-precipitated morphine withdrawal in rats. Neurosci. Lett., 2010, 482(3), 255-259.
[http://dx.doi.org/10.1016/j.neulet.2010.07.050] [PMID: 20667500]
[57]
Monti, J.M. The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep. Sleep Med. Rev., 2010, 14(5), 319-327.
[http://dx.doi.org/10.1016/j.smrv.2009.10.003] [PMID: 20153670]
[58]
Takahashi, A.; Lee, R.X.; Iwasato, T.; Itohara, S.; Arima, H.; Bettler, B.; Miczek, K.A.; Koide, T. Glutamate input in the dorsal raphe nucleus as a determinant of escalated aggression in male mice. J. Neurosci., 2015, 35(16), 6452-6463.
[http://dx.doi.org/10.1523/JNEUROSCI.2450-14.2015] [PMID: 25904796]
[59]
Dougalis, A.G.; Matthews, G.A.C.; Bishop, M.W.; Brischoux, F.; Kobayashi, K.; Ungless, M.A. Functional properties of dopamine neurons and co-expression of vasoactive intestinal polypeptide in the dorsal raphe nucleus and ventro-lateral periaqueductal grey. Eur. J. Neurosci., 2012, 36(10), 3322-3332.
[http://dx.doi.org/10.1111/j.1460-9568.2012.08255.x] [PMID: 22925150]
[60]
Welsch, L.; Colantonio, E.; Falconnier, C.; Champagnol-DiLiberti, C.; Allain, F.; Ben Hamida, S.; Darcq, E.; Lutz, P.E.; Kieffer, B.L. Mu opioid receptor–positive neurons in the dorsal raphe nucleus are impaired by morphine abstinence. Biol. Psychiatry, 2023, 5.
[http://dx.doi.org/10.1016/j.biopsych.2023.06.024] [PMID: 37393045]
[61]
Fu, B.; Yao, J.; Lu, C.; Wang, B.; Li, Z.; Huang, M.; Tian, T.; Peng, H.; Liu, S. Dorsal Raphe nucleus serotoninergic neurons mediate morphine rewarding effect and conditioned place preference. Neuroscience, 2022, 480, 108-116.
[http://dx.doi.org/10.1016/j.neuroscience.2021.10.031] [PMID: 34762982]
[62]
Nakamura, K. The role of the dorsal raphé nucleus in reward-seeking behavior. Front. Integr. Nuerosci., 2013, 7, 60.
[http://dx.doi.org/10.3389/fnint.2013.00060] [PMID: 23986662]
[63]
Lowry, C.A.; Hale, M.W.; Evans, A.K.; Heerkens, J.; Staub, D.R.; Gasser, P.J.; Shekhar, A. Serotonergic systems, anxiety, and affective disorder: Focus on the dorsomedial part of the dorsal raphe nucleus. Ann. N. Y. Acad. Sci., 2008, 1148(1), 86-94.
[http://dx.doi.org/10.1196/annals.1410.004] [PMID: 19120094]
[64]
Müller, C.P.; Homberg, J.R. The role of serotonin in drug use and addiction. Behav. Brain Res., 2015, 277, 146-192.
[http://dx.doi.org/10.1016/j.bbr.2014.04.007] [PMID: 24769172]
[65]
Qi, J.; Zhang, S.; Wang, H.L.; Wang, H.; de Jesus Aceves Buendia, J.; Hoffman, A.F.; Lupica, C.R.; Seal, R.P.; Morales, M. A glutamatergic reward input from the dorsal raphe to ventral tegmental area dopamine neurons. Nat. Commun., 2014, 5(1), 5390.
[http://dx.doi.org/10.1038/ncomms6390] [PMID: 25388237]
[66]
McDevitt, R.A.; Tiran-Cappello, A.; Shen, H.; Balderas, I.; Britt, J.P.; Marino, R.A.M.; Chung, S.L.; Richie, C.T.; Harvey, B.K.; Bonci, A. Serotonergic versus nonserotonergic dorsal raphe projection neurons: Differential participation in reward circuitry. Cell Rep., 2014, 8(6), 1857-1869.
[http://dx.doi.org/10.1016/j.celrep.2014.08.037] [PMID: 25242321]
[67]
Ishibashi, M.; Gumenchuk, I.; Miyazaki, K.; Inoue, T.; Ross, W.N.; Leonard, C.S. Hypocretin/orexin peptides alter spike encoding by serotonergic dorsal raphe neurons through two distinct mechanisms that increase the late afterhyperpolarization. J. Neurosci., 2016, 36(39), 10097-10115.
[http://dx.doi.org/10.1523/JNEUROSCI.0635-16.2016] [PMID: 27683906]
[68]
Alvarez-Bagnarol, Y.; García, R.; Vendruscolo, L.F.; Morales, M. Inhibition of dorsal raphe GABAergic neurons blocks hyperalgesia during heroin withdrawal. Neuropsychopharmacology, 2023, 48(9), 1300-1308.
[http://dx.doi.org/10.1038/s41386-023-01620-5] [PMID: 37270620]
[69]
Kohlmeier, K.A.; Watanabe, S.; Tyler, C.J.; Burlet, S.; Leonard, C.S. Dual orexin actions on dorsal raphe and laterodorsal tegmentum neurons: Noisy cation current activation and selective enhancement of Ca2+ transients mediated by L-type calcium channels. J. Neurophysiol., 2008, 100(4), 2265-2281.
[http://dx.doi.org/10.1152/jn.01388.2007] [PMID: 18667550]
[70]
Brown, R.E.; Sergeeva, O.; Eriksson, K.S.; Haas, H.L. Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology, 2001, 40(3), 457-459.
[http://dx.doi.org/10.1016/S0028-3908(00)00178-7] [PMID: 11166339]
[71]
Wang, Q.P.; Koyama, Y.; Guan, J.L.; Takahashi, K.; Kayama, Y.; Shioda, S. The orexinergic synaptic innervation of serotonin- and orexin 1-receptor-containing neurons in the dorsal raphe nucleus. Regul. Pept., 2005, 126(1-2), 35-42.
[http://dx.doi.org/10.1016/j.regpep.2004.08.030] [PMID: 15620411]
[72]
Liu, R.J.; van den Pol, A.N.; Aghajanian, G.K. Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J. Neurosci., 2002, 22(21), 9453-9464.
[http://dx.doi.org/10.1523/JNEUROSCI.22-21-09453.2002] [PMID: 12417670]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy