Skip to main content
Log in

Monte Carlo simulation of hard-, square-well, and square-shoulder disks in narrow channels

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We perform Monte Carlo simulation of the thermodynamic and structural properties of hard-, square-well, and square-shoulder disks in narrow channels. For the thermodynamics, we study the internal energy per particle and the longitudinal and transverse compressibility factor. For the structure, we study the transverse density and density of pairs profiles, the radial distribution function and longitudinal distribution function, and the (static) longitudinal structure factor. We compare our results with a recent exact semi-analytic solution found by Montero and Santos for the single file formation and first nearest neighbor fluid, and explore how their solution performs when these conditions are not fulfilled making it just an approximation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. R. Fantoni, A. Santos, Multicomponent fluid of nonadditive hard spheres near a wall. Phys. Rev. E 87, 042102 (2013). https://doi.org/10.1103/PhysRevE.87.042102

    Article  ADS  Google Scholar 

  2. H. Kyakuno, K. Matsuda, H. Yahiro, Y. Inami, T. Fukuoka, Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, T. Saito, M. Yumura, S. Iijima, Confined water inside single-walled carbon nanotubes: global phase diagram and effect of finite length. J. Chem. Phys. 134, 244501 (2011)

    Article  ADS  Google Scholar 

  3. M. Majumder, N. Chopra, B.J. Hinds, Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano 5, 3867 (2011)

    Article  Google Scholar 

  4. D. Boda, W. Nonner, D. Henderson, B. Eisenberg, D. Gillespie, Volume exclusion in calcium selective channels. Biophys. J. 94, 3486 (2008)

    Article  ADS  Google Scholar 

  5. R. Fantoni, Exact results for one dimensional fluids through functional integration. J. Stat. Phys. 163, 1247 (2016). https://doi.org/10.1007/s10955-016-1510-3

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Fantoni, One-dimensional fluids with positive potentials. J. Stat. Phys. 166, 1334 (2017). https://doi.org/10.1007/s10955-016-1707-5

    Article  MathSciNet  ADS  Google Scholar 

  7. R. Fantoni, How should we choose the boundary conditions in a simulation which could detect anyons in one and two dimensions? J. Low Temp. Phys. 202, 247 (2021). https://doi.org/10.1007/s10909-020-02532-0

    Article  ADS  Google Scholar 

  8. A. Santos, R. Fantoni, A. Giacometti, Penetrable square-well fluids: exact results in one dimension. Phys. Rev. E 77, 051206 (2008). https://doi.org/10.1103/PhysRevE.77.051206

    Article  ADS  Google Scholar 

  9. R. Fantoni, A. Giacometti, A. Malijevský, A. Santos, A numerical test of a high-penetrability approximation for the one-dimensional penetrable-square-well model. J. Chem. Phys. 133, 024101 (2010). https://doi.org/10.1063/1.3455330

    Article  ADS  Google Scholar 

  10. R. Fantoni, Non existence of a phase transition for the penetrable square well model in one dimension. J. Stat. Mech. (2010). https://doi.org/10.1088/1742-5468/2010/07/P07030

    Article  Google Scholar 

  11. M.A.G. Maestre, R. Fantoni, A. Giacometti, A. Santos, Janus fluid with fixed patch orientations: theory and simulations. J. Chem. Phys. 138, 094904 (2013). https://doi.org/10.1063/1.4793626

    Article  ADS  Google Scholar 

  12. R. Fantoni, A. Giacometti, M.A.G. Maestre, A. Santos, Phase diagrams of janus fluids with up-down constrained orientations. J. Chem. Phys. 139, 174902 (2013). https://doi.org/10.1063/1.4827861

    Article  ADS  Google Scholar 

  13. R. Fantoni, M.A.G. Maestre, A. Santos, Finite-size effects and thermodynamic limit in one-dimensional janus fluids. J. Stat. Mech. (2021). https://doi.org/10.1088/1742-5468/ac2897

    Article  Google Scholar 

  14. R. Fantoni, A. Santos, One-dimensional fluids with second nearest-neighbor interactions. J. Stat. Phys. 169, 1171 (2017). https://doi.org/10.1007/s10955-017-1908-6

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Santos, A Concise Course on the Theory of Classical Liquids. Basics and Selected Topics, Lecture Notes in Physics, Vol. 923 (Springer, New York, 2016)

  16. L. Tonks, The complete equation of state of one, two and three-dimensional gases of hard elastic spheres. Phys. Rev. 50, 955 (1936)

    Article  ADS  Google Scholar 

  17. Z.W. Salsburg, R.W. Zwanzig, J.G. Kirkwood, Molecular distribution functions in a one-dimensional fluid. J. Chem. Phys. 21 ( 1953)

  18. R. Fantoni, B. Jancovici, G. Téllez, Pressures for a one-component plasma on a pseudosphere. J. Stat. Phys. 112, 27 (2003). https://doi.org/10.1023/A:1023671419021

    Article  MathSciNet  Google Scholar 

  19. R. Fantoni, G. Téllez, Two dimensional one-component plasma on a flamm’s paraboloid. J. Stat. Phys. 133, 449 (2008). https://doi.org/10.1007/s10955-008-9616-x

    Article  MathSciNet  ADS  Google Scholar 

  20. R. Fantoni, Two component plasma in a flamm’s paraboloid. J. Stat. Mech. (2012). https://doi.org/10.1088/1742-5468/2012/04/P04015

    Article  Google Scholar 

  21. R. Fantoni, Jellium at finite temperature. Mol. Phys. 120, 4 (2021). https://doi.org/10.1080/00268976.2021.1996648

    Article  Google Scholar 

  22. A.M. Montero, A. Santos, Equation of state of hard-disk fluids under single-file confinement. J. Chem. Phys. 158, 154501 (2023)

    Article  ADS  Google Scholar 

  23. A.M. Montero, A. Santos, Structural properties of hard-disk fluids under single-file confinement. J. Chem. Phys. 159, 034503 (2023)

    Article  ADS  Google Scholar 

  24. A. Poncet, A. Grabsch, P. Illien, O. Bńichou, Generalized correlation profiles in single-file systems. Phys. Rev. Lett. 127, 220601 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  25. A. Horner, P. Pohl, Single-file transport of water through membrane channels. Faraday Discuss. 209, 9 (2018)

    Article  ADS  Google Scholar 

  26. R. Fantoni, A. Santos, Nonadditive hard-sphere fluid mixtures. A simple analytical theory. Phys. Rev. E 84, 041201 (2011). https://doi.org/10.1103/PhysRevE.84.041201

    Article  ADS  Google Scholar 

  27. R. Fantoni, D. Gazzillo, A. Giacometti, Stability boundaries, percolation threshold, and two phase coexistence for polydisperse fluids of adhesive colloidal particles. J. Chem. Phys. 122, 034901 (2005). https://doi.org/10.1063/1.1831275

    Article  ADS  Google Scholar 

  28. D. Gazzillo, R. Fantoni, A. Giacometti, Phase behavior of polydisperse sticky hard spheres: analytical solutions and perturbation theory. Mol. Phys. 104, 3451 (2006). https://doi.org/10.1080/00268970601050892

    Article  ADS  Google Scholar 

  29. R. Fantoni, D. Gazzillo, A. Giacometti, P. Sollich, Phase behavior of weakly polydisperse sticky hard spheres: perturbation theory for the percus-yevick solution. J. Chem. Phys. 125, 164504 (2006). https://doi.org/10.1063/1.2358136

    Article  ADS  Google Scholar 

  30. D.A. Kofke, A.J. Post, Hard particles in narrow pores. Transfer-matrix solution and the periodic narrow box. J. Chem. Phys. 98, 4853 (1993)

  31. K.K. Mon, Analytical evaluation of third and fourth virial coefficients for hard disk fluids in narrow channels and equation of state. Phys. A 556, 124833 (2020)

    Article  MathSciNet  Google Scholar 

  32. S. Varga, G. Balló, P. Gurin, Structural properties of hard disks in a narrow tube. J. Stat. Mech. (2011)

  33. A. Huerta, T. Bryk, V.M. Pergamenshchik, A. Trokhymchuk, Collective dynamics in quasi-one-dimensional hard disk system. Front. Phys. 9, 636052 (2021)

    Article  Google Scholar 

  34. M.H. Kalos, P.A. Whitlock, Monte Carlo Methods (Wiley, New York, 1986)

  35. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987). (Section 6.2)

    Google Scholar 

  36. D. Frenkel, B. Smit, Understanding Molecular Simulation (Academic Press, San Diego, 1996)

    Google Scholar 

  37. J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids, 2nd edn. (Academic Press, San Diego, 1986). (Section 2.5)

    Google Scholar 

  38. A.M. Montero, private communication (2023)

  39. V.M. Pergamenshchik, Analytical canonical partition function of a quasi-one-dimensional system of hard disks. J. Chem. Phys. 153, 144111 (2020)

    Article  ADS  Google Scholar 

  40. A. Santos, private communication (2023)

  41. Y. Hu, P. Charbonneau, Kosterlitz-thouless-type caging-uncaging transition in a quasi-one-dimensional hard disk system. Phys. Rev. Res. 3, 038001 (2021)

    Article  Google Scholar 

  42. R. Fantoni, D. Gazzillo, A. Giacometti, The thermodynamic instabilities of a binary mixture of sticky hard spheres. Phys. Rev. E 72, 011503 (2005). https://doi.org/10.1103/PhysRevE.72.011503

    Article  ADS  Google Scholar 

  43. D. Gazzillo, A. Giacometti, R. Fantoni, P. Sollich, Multicomponent adhesive hard sphere models and short-ranged attractive interactions in colloidal or micellar solutions. Phys. Rev. E 74, 051407 (2006). https://doi.org/10.1103/PhysRevE.74.051407

    Article  ADS  Google Scholar 

  44. R. Fantoni, D. Gazzillo, A. Giacometti, M.A. Miller, G. Pastore, Patchy sticky hard spheres: analytical study and Monte Carlo simulations. J. Chem. Phys. 127, 234507 (2007). https://doi.org/10.1063/1.2805066

    Article  ADS  Google Scholar 

  45. R. Fantoni, Andersen-weeks-chandler perturbation theory and one-component sticky-hard-spheres. J. Stat. Phys. 168, 652 (2017). https://doi.org/10.1007/s10955-017-1810-2

    Article  MathSciNet  ADS  Google Scholar 

  46. R. Fantoni, Effect of quantum dispersion on the radial distribution function of a one-component sticky-hard-sphere fluid. J. Stat. Mech. (2018). https://doi.org/10.1088/1742-5468/aab690

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful to Ana M. Montero and Andrés Santos for proposing the project, stimulating its publication, and for the very many fruitful discussions and profound insights. I am grateful to Ana M. Montero for providing me with her results used in Figs. 148, 911 some of which had not been published before.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Fantoni.

Ethics declarations

Conflict of interest

The author has no conflicts to disclose.

Appendices

Appendix A: On the longitudinal pressure of HD from the LDF

Using the notation of Refs. [22, 23], we have for the Equation Of State (EOS)

$$\begin{aligned} Z_\mathrm{{L}}=\frac{\beta p}{\lambda }= 1+A^2\sum _{i,j}\phi _i\phi _ja_{ij}e^{-\beta p a_{ij}}, \end{aligned}$$
(A1)

where \(A^2\) and \(\phi _i\) are the solutions to

$$\begin{aligned} \sum _je^{-\beta p a_{ij}}\phi _j=\frac{\beta p}{A^2}\phi _i. \end{aligned}$$
(A2)

The LDF in the range \(a(\epsilon )<x<2a(\epsilon )\) is

$$\begin{aligned} g(x)=\frac{A^2}{\lambda }\sum _{i,j}\phi _i\phi _ja_{ij}e^{-\beta p x} \Theta (x-a_{ij}). \end{aligned}$$
(A3)

Our aim is to express the EOS in terms of the integrals

$$\begin{aligned} I_n=\int _{a(\epsilon )}^1\mathrm{{d}}x\,x^ng(x), \quad n=0,1 \end{aligned}$$
(A4)

Inserting Eq. (A3) into Eq. (A4)

$$\begin{aligned} I_0= & {} \frac{A^2}{\beta p\lambda }\sum _{i,j}\phi _i\phi _j \left( e^{-\beta p a_{ij}}-e^{-\beta p}\right) ,\end{aligned}$$
(A5a)
$$\begin{aligned} I_1= & {} \frac{A^2}{(\beta p)^2\lambda }\sum _{i,j}\phi _i\phi _j \left[ e^{-\beta p a_{ij}}(1+\beta p a_{ij})\right. \nonumber \\{} & {} \left. -e^{-\beta p}(1+\beta p)\right] . \end{aligned}$$
(A5b)

From Eq. (A2), we have \(\sum _{i,j}\phi _i\phi _je^{-\beta p a_{ij}}=\beta p/A^2\). Therefore,

$$\begin{aligned} \lambda I_0= & {} 1-\frac{A^2}{\beta p}e^{-\beta p}\sum _{i,j}\phi _i\phi _j,\end{aligned}$$
(A6a)
$$\begin{aligned} \beta p\lambda I_1= & {} 1+A^2\left[ \sum _{i,j}\phi _i\phi _ja_{ij}e^{-\beta p a_{ij}} \right. \nonumber \\{} & {} \left. -e^{-\beta p}\left( 1+\frac{1}{\beta p}\right) \sum _{i,j}\phi _i\phi _j\right] . \end{aligned}$$
(A6b)

Comparison with Eq. (A1) yields

$$\begin{aligned} \beta p\lambda I_1=Z_\mathrm{{L}}-(1+\beta p)(1-\lambda I_0). \end{aligned}$$
(A7)

This is a linear equation in \(Z_\mathrm{{L}}\) which is solved by Eq. (2.13a) in the main text. From which immediately follows that for the pure 1D (Hard Rods) case, we find \(Z_\mathrm{{L}}=1/(1-\lambda )\), since \(\epsilon \rightarrow 0\) and \(a(\epsilon )\rightarrow 1\) so that \(I_n=0\), as it should be [16].

Note also that from Appendix C of Ref. [23] follows that in the \(p\rightarrow \infty \) limit or equivalently in the \(\lambda \rightarrow \lambda _{\textrm{cp}}\) limit one finds \(\lim _{\lambda \rightarrow \lambda _{\textrm{cp}}}\lambda I_0=\lim _{\lambda \rightarrow \lambda _{\textrm{cp}}}\lambda ^2 I_1=1\). In the continuum limit, one has from Eq. (A6a)

$$\begin{aligned} \lambda I_0= & {} 1-\frac{e^{-\beta p}}{\ell }J^2, \end{aligned}$$
(A8a)
$$\begin{aligned} J= & {} \int _{-\epsilon /2}^{\epsilon /2}\phi (y)\,\mathrm{{d}}y. \end{aligned}$$
(A8b)

In the high-pressure regime

$$\begin{aligned} \phi (y)\rightarrow & {} \frac{1}{\sqrt{{\mathcal {N}}}}[\phi _+(y)+\phi _-(y)],\end{aligned}$$
(A9a)
$$\begin{aligned} \phi _{\pm }(y)= & {} e^{-a(y\pm \epsilon /2)\beta p},\end{aligned}$$
(A9b)
$$\begin{aligned} {{\mathcal {N}}}\rightarrow & {} \frac{a(\epsilon )}{\epsilon \beta p}e^{-2a(\epsilon )\beta p},\end{aligned}$$
(A9c)
$$\begin{aligned} \ell\rightarrow & {} \frac{a(\epsilon )}{2\epsilon \beta p}e^{-a(\epsilon )\beta p}. \end{aligned}$$
(A9d)

Thus,

$$\begin{aligned} J= & {} \frac{2}{\sqrt{\mathcal {N}}}\int _{-\epsilon /2}^{\epsilon /2}\phi _+(y)\,\mathrm{{d}}y. \end{aligned}$$
(A10)

By expanding \(a(y+\epsilon /2)\) around \(y=\epsilon /2\)

$$\begin{aligned} a(y+\epsilon /2)\rightarrow a(\epsilon )+\frac{\epsilon }{a(\epsilon )}(\epsilon /2-y) +\cdots \end{aligned}$$
(A11)

Therefore,

$$\begin{aligned} J\rightarrow & {} \frac{2}{\sqrt{{\mathcal {N}}}}e^{-a(\epsilon )\beta p} \int _{-\epsilon /2}^{\epsilon /2}e^{-\frac{\epsilon \beta p}{a(\epsilon )}(\epsilon /2-y)}\,\mathrm{{d}}y\nonumber \\\rightarrow & {} \frac{2}{\sqrt{{\mathcal {N}}}}e^{-a(\epsilon )\beta p} \frac{a(\epsilon )}{\epsilon \beta p}=2\sqrt{\frac{a(\epsilon )}{\epsilon \beta p}}. \end{aligned}$$
(A12)

Consequently

$$\begin{aligned} \lambda I_0\rightarrow 1-8e^{-\beta p[1-a(\epsilon )]}. \end{aligned}$$
(A13)

Consistency between this result and Eq. (2.15) gives Eqs. (2.14a)–(2.14b) in the main text.

Appendix B: RDF of the ideal gas in a narrow channel

We arrive at the analytically exact Eq. (3.1) for the RDF of the ideal gas confined in the narrow channel with the following steps

$$\begin{aligned} g_{\textrm{id}}(r)= & {} \frac{\lambda }{2N}\int _{0}^{L}\mathrm{{d}}x_1\int _{0}^{L}\mathrm{{d}}x_2 \int _{-\epsilon /2}^{\epsilon /2}\mathrm{{d}}y_1\,\frac{1}{\epsilon } \int _{-\epsilon /2}^{\epsilon /2}\mathrm{{d}}y_2\, \frac{1}{\epsilon }\nonumber \\{} & {} \times \delta (r-\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}). \end{aligned}$$
(B1)

Since the integrand depends only on \(x=|x_2-x_1|\), we have \(\int _0^L\mathrm{{d}}x_1\int _0^L\mathrm{{d}}x_2\ldots =2\int _0^L\mathrm{{d}}x\,(L-x)\ldots \). Moreover,

$$\begin{aligned} \delta (r-\sqrt{x^2+s^2})=\frac{r}{x}\delta (x-\sqrt{r^2-s^2}). \end{aligned}$$
(B2)

Therefore,

$$\begin{aligned}{} & {} g_{\textrm{id}}(r)\nonumber \\{} & {} =\frac{\lambda }{N\epsilon ^2}r\int _{-\epsilon /2}^{\epsilon /2}\mathrm{{d}}y_1 \int _{-\epsilon /2}^{\epsilon /2}\mathrm{{d}}y_2\, \left( \frac{L}{\sqrt{r^2-(y_2-y_1)^2}}-1\right) \nonumber \\{} & {} =\frac{2}{\epsilon ^2}r\int _0^{\min (\epsilon ,r)} ds\,(\epsilon -s) \left( \frac{1}{\sqrt{r^2-s^2}}-\frac{1}{L}\right) \nonumber \\{} & {} \approx \frac{2}{\epsilon ^2}r\int _0^{\min (\epsilon ,r)} ds\, \frac{\epsilon -s}{\sqrt{r^2-s^2}}. \end{aligned}$$
(B3)

Where in the first step, we have assumed that \(\sqrt{r^2-(y_2-y_1)^2}<L\) and in the third step we have taken the limit \(L\rightarrow \infty \). In the limit \(r\gg 1\), \(\sqrt{r^2-s^2}\approx r\), so that \(g_{\textrm{id}}(r)\approx 1\) as expected.

The integral in Eq. (B3) can be analytically performed and the result is given by Eq. (3.1) in the main text.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fantoni, R. Monte Carlo simulation of hard-, square-well, and square-shoulder disks in narrow channels. Eur. Phys. J. B 96, 155 (2023). https://doi.org/10.1140/epjb/s10051-023-00625-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00625-9

Navigation