Skip to main content
Log in

Cytoprotective effects of Hangekobokuto against corticosterone-induced cell death in HT22 cells

  • Natural Resource Letter
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The hypothalamic–pituitary–adrenal (HPA) system plays an important role in stress response. Chronic stress is thought to induce neuronal damage and contribute to the pathogenesis of psychiatric disorders by causing dysfunction of the HPA system and promoting the production and release of glucocorticoids, including corticosterone and cortisol. Several clinical studies have demonstrated the efficacy of herbal medicines in treating psychiatric disorders; however, their effects on corticosterone-induced neuronal cell death remain unclear. Here, we used HT22 cells to evaluate the neuroprotective potential of herbal medicines used in neuropsychiatry against corticosterone-induced hippocampal neuronal cell death. Cell death was assessed using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) reduction and Live/Dead assays. Hangekobokuto, Kamikihito, Saikokaryukotsuboreito, Kamishoyosan, and Yokukansan were supplied in the form of water-extracted dried powders. Exposure of HT22 cells to ≥ 100 μM corticosterone decreased MTT values. Exposure to 500 μM corticosterone alone reduced MTT values to 18%, while exposure to 10 μM Mifepristone (RU486)—a glucocorticoid receptor antagonist—restored values to 36%. Corticosterone-induced cell death was partially suppressed by treatment with RU486. At 100 μg/mL, Hangekobokuto significantly suppressed the decrease in MTT values (15–32%) and increase in the percentage of ethidium homodimer-1-positive dead cells caused by corticosterone exposure (78–36%), indicating an inhibitory effect on cell death. By contrast, Kamikihito, Saikokaryukotsuboreito, Kamishoyosan, and Yokukansan did not affect corticosterone-induced cell death. Therefore, our results suggest that Hangekobokuto may ameliorate the onset and progression of psychiatric disorders by suppressing neurological disorders associated with increased levels of glucocorticoids.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. McEwen BS (2008) Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583:174–185. https://doi.org/10.1016/j.ejphar.2007.11.071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Sandi C (2004) Stress, cognitive impairment and cell adhesion molecules. Nat Rev Neurosci 5:917–930. https://doi.org/10.1038/nrn1555

    Article  PubMed  CAS  Google Scholar 

  3. Zunszain PA, Anacker C, Cattaneo A, Carvalho LA, Pariante CM (2011) Glucocorticoids, cytokines and brain abnormalities in depression. Prog Neuropsychopharmacol Biol Psychiatry 35:722–729. https://doi.org/10.1016/j.pnpbp.2010.04.011

    Article  PubMed  CAS  Google Scholar 

  4. Zorn JV, Schür RR, Boks MP, Kahn RS, Joëls M, Vinkers CH (2017) Cortisol stress reactivity across psychiatric disorders: a systematic review and meta-analysis. Psychoneuroendocrinology 77:25–36. https://doi.org/10.1016/j.psyneuen.2016.11.036

    Article  PubMed  CAS  Google Scholar 

  5. Gu HF, Nie YX, Tong QZ, Tang YL, Zeng Y, Jing KQ, Zheng XL, Liao DF (2014) Epigallocatechin-3-gallate attenuates impairment of learning and memory in chronic unpredictable mild stress-treated rats by restoring hippocampal autophagic flux [published correction appears in PLoS One. 2015;10:e0117649]. PLoS ONE 9:e112683. https://doi.org/10.1371/journal.pone.0112683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Schoenfeld TJ, McCausland HC, Morris HD, Padmanaban V, Cameron HA (2017) Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biol Psychiatry 82:914–923. https://doi.org/10.1016/j.biopsych.2017.05.013

    Article  PubMed  PubMed Central  Google Scholar 

  7. Murray F, Smith DW, Hutson PH (2008) Chronic low dose corticosterone exposure decreased hippocampal cell proliferation, volume and induced anxiety and depression like behaviours in mice. Eur J Pharmacol 583:115–127. https://doi.org/10.1016/j.ejphar.2008.01.014

    Article  PubMed  CAS  Google Scholar 

  8. Jia Y, Liu L, Sheng C, Cheng Z, Cui L, Li M, Zhao Y, Shi T, Yau TO, Li F, Chen L (2019) Increased serum levels of cortisol and inflammatory cytokines in people with depression [published correction appears in J Nerv Ment Dis. 2019;207:610]. J Nerv Ment Dis 207:271–276. https://doi.org/10.1097/NMD.0000000000000957

    Article  PubMed  Google Scholar 

  9. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW (1996) Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 93:3908–3913. https://doi.org/10.1073/pnas.93.9.3908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Treadway MT, Waskom ML, Dillon DG, Holmes AJ, Park MTM, Chakravarty MM, Dutra SJ, Polli FE, Iosifescu DV, Fava M, Gabrieli JDE, Pizzagalli DA (2015) Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biol Psychiatry 77:285–294. https://doi.org/10.1016/j.biopsych.2014.06.018

    Article  PubMed  Google Scholar 

  11. Ago Y, Arikawa S, Yata M, Yano K, Abe M, Takuma K, Matsuda T (2008) Antidepressant-like effects of the glucocorticoid receptor antagonist RU-43044 are associated with changes in prefrontal dopamine in mouse models of depression. Neuropharmacology 55:1355–1363. https://doi.org/10.1016/j.neuropharm.2008.08.026

    Article  PubMed  CAS  Google Scholar 

  12. Liu J, Li L, Suo WZ (2009) HT22 hippocampal neuronal cell line possesses functional cholinergic properties. Life Sci 84:267–271. https://doi.org/10.1016/j.lfs.2008.12.008

    Article  PubMed  CAS  Google Scholar 

  13. Xu B, Lang L, Li S, Yuan J, Wang J, Yang H, Lian S (2019) Corticosterone excess-mediated mitochondrial damage induces hippocampal neuronal autophagy in mice following cold exposure. Animals (Basel) 9:682. https://doi.org/10.3390/ani9090682

    Article  PubMed  Google Scholar 

  14. Zheng Y, Huang J, Tao L, Shen Z, Li H, Mo F, Wang X, Wang S, Shen H (2015) Corticosterone increases intracellular Zn(2+) release in hippocampal HT-22 cells. Neurosci Lett 588:172–177. https://doi.org/10.1016/j.neulet.2015.01.016

    Article  PubMed  CAS  Google Scholar 

  15. Xu Y, Pan J, Chen L, Zhang C, Sun J, Li J, Nguyen L, Nair N, Zhang H, O’Donnell JM (2013) Phosphodiesterase-2 inhibitor reverses corticosterone-induced neurotoxicity and related behavioural changes via cGMP/PKG dependent pathway. Int J Neuropsychopharmacol 16:835–847. https://doi.org/10.1017/S146114571200065X

    Article  PubMed  CAS  Google Scholar 

  16. Ramos-Hryb AB, Platt N, Freitas AE, Heinrich IA, López MG, Leal RB, Kaster MP, Rodrigues ALS (2019) Protective effects of ursolic acid against cytotoxicity induced by corticosterone: role of protein kinases. Neurochem Res 44:2843–2855. https://doi.org/10.1007/s11064-019-02906-1

    Article  CAS  Google Scholar 

  17. Tavares MK, Dos Reis S, Platt N, Heinrich IA, Wolin IAV, Leal RB, Kaster MP, Rodrigues ALS, Freitas AE (2018) Agmatine potentiates neuroprotective effects of subthreshold concentrations of ketamine via mTOR/S6 kinase signaling pathway. Neurochem Int 118:275–285. https://doi.org/10.1016/j.neuint.2018.05.006

    Article  PubMed  CAS  Google Scholar 

  18. Li YF, Gong ZH, Cao JB, Wang HL, Luo ZP, Li J (2003) Antidepressant-like effect of agmatine and its possible mechanism. Eur J Pharmacol 469:81–88. https://doi.org/10.1016/s0014-2999(03)01735-7

    Article  PubMed  CAS  Google Scholar 

  19. Kanba S, Yamada K, Mizushima H, Asai M (1998) Use of herbal medicine for treating psychiatric disorders in Japan. Psychiatry Clin Neurosci 52(Suppl):S331–S333. https://doi.org/10.1111/j.1440-1819.1998.tb03260.x

    Article  PubMed  Google Scholar 

  20. Kosuge Y, Saito H, Haraguchi T, Ichimaru Y, Ohashi S, Miyagishi H, Kobayashi S, Ishige K, Miyairi S, Ito Y (2017) Indirubin derivatives protect against endoplasmic reticulum stress-induced cytotoxicity and down-regulate CHOP levels in HT22 cells. Bioorg Med Chem Lett 27:5122–5125. https://doi.org/10.1016/j.bmcl.2017.10.069

    Article  PubMed  CAS  Google Scholar 

  21. Miyagishi H, Kosuge Y, Yoneoka Y, Ozone M, Endo M, Osada N, Ishige K, Kusama-Eguchi K, Ito Y (2013) Prostaglandin E2-induced cell death is mediated by activation of EP2 receptors in motor neuron-like NSC-34 cells. J Pharmacol Sci 121:347–350. https://doi.org/10.1254/jphs.12274sc

    Article  PubMed  CAS  Google Scholar 

  22. Kosuge Y, Nango H, Kasai H, Yanagi T, Mawatari T, Nishiyama K, Miyagishi H, Ishige K, Ito Y (2020) Generation of cellular reactive oxygen species by activation of the EP2 receptor contributes to prostaglandin e2-induced cytotoxicity in motor neuron-like NSC-34 cells. Oxid Med Cell Longev 2020:6101838. https://doi.org/10.1155/2020/6101838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Miyagishi H, Tsuji M, Miyagawa K, Kurokawa K, Mochida-Saito A, Takahashi K, Kosuge Y, Ishige K, Takeda H (2022) Possible role of transcriptional regulation of 5-HT1A receptor in the midbrain on unadaptation to stress in mice. Brain Res 1783:147859. https://doi.org/10.1016/j.brainres.2022.147859

    Article  PubMed  CAS  Google Scholar 

  24. Freitas AE, Neis VB, Rodrigues ALS (2016) Agmatine, a potential novel therapeutic strategy for depression. Eur Neuropsychopharmacol 26:1885–1899. https://doi.org/10.1016/j.euroneuro.2016.10.013

    Article  PubMed  CAS  Google Scholar 

  25. Freitas AE, Egea J, Buendía I, Navarro E, Rada P, Cuadrado A, Rodrigues AL, López MG (2015) Agmatine induces Nrf2 and protects against corticosterone effects in hippocampal neuronal cell line. Mol Neurobiol 51:1504–1519. https://doi.org/10.1007/s12035-014-8827-1

    Article  PubMed  CAS  Google Scholar 

  26. Mantani N, Hisanaga A, Kogure T, Kita T, Shimada Y, Terasawa K (2002) Four cases of panic disorder successfully treated with Kampo (Japanese herbal) medicines: kami-shoyo-san and Hange-koboku-to. Psychiatry Clin Neurosci 56:617–620. https://doi.org/10.1046/j.1440-1819.2002.01064.x

    Article  PubMed  Google Scholar 

  27. Hisanaga A, Itoh T, Hasegawa Y, Emori K, Kita T, Okabe A, Kurachi M (2002) A case of sleep choking syndrome improved by the Kampo extract of Hange-koboku-to. Psychiatry Clin Neurosci 56:325–327. https://doi.org/10.1046/j.1440-1819.2002.01001.x

    Article  PubMed  Google Scholar 

  28. Jia KK, Zheng YJ, Zhang YX, Liu JH, Jiao RQ, Pan Y, Kong LD (2017) Banxia-houpu decoction restores glucose intolerance in CUMS rats through improvement of insulin signaling and suppression of NLRP3 inflammasome activation in liver and brain. J Ethnopharmacol 209:219–229. https://doi.org/10.1016/j.jep.2017.08.004

    Article  PubMed  Google Scholar 

  29. Boldrini M, Santiago AN, Hen R, Dwork AJ, Rosoklija GB, Tamir H, Arango V, John Mann J (2013) Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology 38:1068–1077. https://doi.org/10.1038/npp.2013.5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Chen ZY, Xie DF, Liu ZY, Zhong YQ, Zeng JY, Chen Z, Chen XL (2020) Identification of the significant pathways of Banxia Houpu decoction in the treatment of depression based on network pharmacology. PLoS ONE 15:e0239843. https://doi.org/10.1371/journal.pone.0239843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Jee HJ, Ryu D, Kim S, Eon SH, Son RH, Hwang SH, Jung YS (2022) Fermented Perilla frutescens ameliorates depression-like behavior in sleep-deprivation-induced stress model. Int J Mol Sci 24:622. https://doi.org/10.3390/ijms24010622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Huang Z, Mao QQ, Zhong XM, Feng CR, Pan AJ, Li ZY (2009) Herbal formula SYJN protect PC12 cells from neurotoxicity induced by corticosterone. J Ethnopharmacol 125:456–460. https://doi.org/10.1016/j.jep.2009.07.018

    Article  PubMed  Google Scholar 

  33. Bai Y, Song L, Dai G, Xu M, Zhu L, Zhang W, Jing W, Ju W (2018) Antidepressant effects of magnolol in a mouse model of depression induced by chronic corticosterone injection. Steroids 135:73–78. https://doi.org/10.1016/j.steroids.2018.03.005

    Article  PubMed  CAS  Google Scholar 

  34. Zhang B, Li Y, Liu M, Duan XH, Hu KL, Li LN, Yu X, Chang HS (2020) Antidepressant-like mechanism of honokiol in a rodent model of corticosterone-induced depression. J Integr Neurosci 19:459–467. https://doi.org/10.31083/j.jin.2020.03.172

    Article  PubMed  Google Scholar 

  35. Nakatani Y, Amano T, Yamamoto H, Sakai N, Tsuji M, Takeda H (2016) Yokukansan enhances the proliferation of B65 neuroblastoma. J Tradit Complement Med 7:34–44. https://doi.org/10.1016/j.jtcme.2016.01.006

    Article  PubMed  PubMed Central  Google Scholar 

  36. Terada K, Matsushima Y, Matsunaga K, Takata J, Karube Y, Ishige A, Chiba K (2018) The Kampo medicine Yokukansan (YKS) enhances nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Bosn J Basic Med Sci 18:224–233. https://doi.org/10.17305/bjbms.2017.2248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kubota K, Sano K, Shiraishi A, Beppu N, Nogami A, Uchida N, Takasaki K, Katsurabayashi S, Mishima K, Nishimura R, Fujiwara M, Iwasaki K (2013) Yokukansan, a traditional Japanese herbal medicine, promotes neurite outgrowth in PC12 cells through the activation of extracellular signal regulated kinase 1/2 and phosphatidylinositol 3-kinase/Akt. J Tradit Med 30:102–113. https://doi.org/10.11339/jtm.30.102

    Article  Google Scholar 

  38. Konaka K, Moriyama K, Sakurada T, Okada N, Imanishi M, Zamami Y, Kawazoe K, Fushitani S, Ishizawa K (2017) Kamishoyosan and Shakuyakukanzoto promote recovery from paclitaxel-induced neurite retraction in PC12 cells. J Pharm Health Care Sci 3:20. https://doi.org/10.1186/s40780-017-0090-y

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang M, Zheng H, Zhang X, Tian X, Xu S, Liu Y, Jiang S, Liu X, Shi R, Gong K, Yan S, Wang H, Shao G, Yang Z (2018) Involvement of nerve growth factor in mouse hippocampal neuronal cell line (HT22) differentiation and underlying role of DNA methyltransferases. J Toxicol Environ Health A 81:1116–1122. https://doi.org/10.1080/15287394.2018.1504384

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank all members of our laboratory, especially T. Murai, K. Hayakawa, A. Takahashi, and K. Tsuruta, for their excellent technical assistance.

Funding

This work was funded in part by JSPS KAKENHI Grant Number 21K06620 (HM and YK), a grant to encourage and promote research projects at the School of Pharmacy, Nihon University (2020–2021, HM), and a Nihon University Research Grant for 2022–2023 (YK). The funding bodies had no role in the design of the study or writing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

HM and YK designed the study. HM and AJ performed the experiments. HM, AJ, HN and KN analyzed and interpreted the data. MT and HT contributed to the preparation of the reagents and materials. HM and YK wrote the manuscript and YK, HN, MT and HT reviewed the manuscript. All the authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Hiroko Miyagishi or Yasuhiro Kosuge.

Ethics declarations

Conflict of interests

The authors have no competing interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 857 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyagishi, H., Joyama, A., Nango, H. et al. Cytoprotective effects of Hangekobokuto against corticosterone-induced cell death in HT22 cells. J Nat Med 78, 255–265 (2024). https://doi.org/10.1007/s11418-023-01766-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01766-y

Keywords

Navigation