Skip to main content
Log in

Evaluation of the Piezoresistive Response of GFRP with a Combination of MWCNT and GNP Exposed to Seawater Aging

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The purpose of this work was the evaluation of electrical conductivity and piezoresistive response of seawater aged glass fiber/epoxy composites (GF/E) with the incorporation of multiwall carbon nanotubes (MWCNTs), graphene nanoplatelets (GNPs) and their hybrid combination (MWCNT/GNP) at two mixing ratios (7:1 and 3:1). Seawater exposure leads to the phenomenon of moisture absorption in GF/E, which negatively affected their bending properties, causing a higher susceptibility to damage mechanisms related to matrix cracking, fiber/matrix interfacial debonding and delamination. However, the addition of MWCNT/GNP hybrids to the GF/E composites induced a positive effect on the electrical response resulting in improved piezoresistive properties (strain sensitivity) and damage sensing under monotonic flexural loading. The results of piezoresistive response experiments also confirmed excellent strain sensing capabilities under cyclic loading condition for both unaged and aged composites, demonstrating the efficiency of using the hybrid combination of MWCNTs and GNPs for electrical sensing applications of composite structures in seawater aged conditions. It was found that the 3:1 mixing ratio allowed better electrical performance of GF/E composites and piezoresistive capability was preserved even after sea water aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Sathishkumar, T.P., Satheeshkumar, S., Naveen, J.: Glass fiber-reinforced polymer composites – a review. J Reinfor Plast Compos 33, 1258–1275 (2014)

    Article  CAS  Google Scholar 

  2. Morampudi, P., Namala, K.K., Gajjela, Y.K., et al.: Review on glass fiber reinforced polymer composites. Mater Today: Proc 43, 314–319 (2021)

    CAS  Google Scholar 

  3. Rajak, D.K., Pagar, D.D., Menezes, P.L., et al.: Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 11, 1667 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mouritz, A.P., Gellert, E., Burchill, P., et al.: Review of advanced composites structures for naval ships and submarines. Compos Struct 53, 21–41 (2001)

    Article  Google Scholar 

  5. Grogan, D.M., Leen, S.B., Kennedy, C.R., et al.: Design of composite tidal turbine blades. Renew Energy 57, 151–162 (2013)

    Article  Google Scholar 

  6. Martinez, R., Payne, G.S., Bruce, T.: The effects of oblique waves and currents on the loadings and performance of tidal turbines. Ocean Engineering 164, 55–64 (2018)

    Article  Google Scholar 

  7. Ke, S., Wen-Quan, W., Yan, Y.: Experimental and numerical analysis of a multilayer composite ocean current turbine blade. Ocean Engineering 198, 106977 (2020)

    Article  Google Scholar 

  8. Xie, T., Wang, T., He, Q., Diallo, D., Claramunt, C.: A review of current issues of marine current turbine blade fault detection. Ocean Engineering 218, 108194 (2020)

    Article  Google Scholar 

  9. Rubio-González, C., José-Trujillo, E., Rodríguez-González, J.A., Espinoza-Hernández, J., Manzo-Preciado, J.A.: Strain self-sensing capability of a tidal turbine blade fabricated of PU-foam/glass fiber/epoxy composites using MWCNTs. Journal of Reinforced Plastics and Composites 42(7), 363–376 (2022)

    Google Scholar 

  10. Davies, P., Rajapakse, Y.D.S.: Durability of Composites in a Marine Environment. Springer, New York (2014)

    Book  Google Scholar 

  11. Davies, P.: Environmental degradation of composites for marine structures: new materials and new applications. Phil Trans R Soc A 374, 272 (2015)

    Google Scholar 

  12. Wang, J., GangaRao, H., Liang, R., et al.: Durability of glass fiber-reinforced polymer composites under the combined effects of moisture and sustained loads. J Reinf Plast Compos 34, 1739–1754 (2015)

    Article  CAS  Google Scholar 

  13. José-Trujillo, E., Rubio-González, C., Rodríguez-González, J.A.: Seawater ageing effect on the mechanical properties of composites with different fiber and matrix types. J Compos Mater 53, 3229–3241 (2019)

    Article  Google Scholar 

  14. Yu, B., Yang, J.: Hygrothermal effects in composites. In: Hashmi, M.S.J. (ed.) Reference Module in Materials Science and aterials Engineering, pp. 502–519. Elsevier, Amsterdam (2017)

    Google Scholar 

  15. Dhakal, H.N., MacMullen, J., Zhang, Z.Y.: Moisture measurement and effects on properties of marine composites. In: Graham-Jones, J., Summerscale, J. (eds.) Marine Applications of Avanced Fibre-Reinforced Composites, pp. 103–124. Woodhead Publishing, Cambridge (2016)

    Chapter  Google Scholar 

  16. Chou, T.-W., Gao, L., Thostenson, E.T., et al.: An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos Sci Technol 70, 1–19 (2010)

    Article  CAS  Google Scholar 

  17. Irfan, M.S., Khan, T., Hussain, T., et al.: Carbon coated piezoresistive fiber sensors: From process monitoring to structural health monitoring of composites- A review. Compos Part A 141, 106236 (2021)

    Article  CAS  Google Scholar 

  18. Mirabedini, A., Ang, A., Nikzad, M., et al.: Evolving Strategies for Producing Multiscale Graphene-Enhanced Fiber-Reinforced Polymer Composites for Smart Structural Applications. Adv Sci 7, 1903501 (2020)

    Article  CAS  Google Scholar 

  19. Li, J., Zhang, Z., Fu, J., et al.: Mechanical properties and structural health monitoring performance of carbon nanotube modified FRP composites: A review. Nanotechnol Rev 10, 1438–1468 (2021)

    Article  CAS  Google Scholar 

  20. Satish, G., Prasad, V.V.S., Ramji, K.: Manufacturing and characterization of CNT based polymer composites. Mathematical Models in Engineering 3(2), 89–97 (2017)

    Article  Google Scholar 

  21. Paul, R., Dai, L.: Interfacial aspects of carbon composites. Compos Interface 25, 539–605 (2018)

    Article  CAS  Google Scholar 

  22. Ma, P.C., Kim, J.K.: Carbon nanotubes for polymer reinforcement. Taylor and Francis, Boca Raton (2011)

    Book  Google Scholar 

  23. Lee, C., Wei, X.D., Kysar, J.W., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. Balandin, A.A., Ghosh, S., Bao, W.Z., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett 8, 902–907 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. Xiang, D., Wang, L., Tang, Y., Harkin-Jones, E., Zhao, C., Wang, P., Li, Y.: Damage self-sensing behavior of carbon nanofiller reinforced polymer composites with different conductive network structures. Polymer 158(5), 308–319 (2018)

    Article  CAS  Google Scholar 

  26. Lubineau, G., Rahaman, A.: A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements. Carbon 50, 2377–2395 (2012)

    Article  CAS  Google Scholar 

  27. Avilés, F., Ku-Herrera, J.J., Oliva-Avilés, A.I.: Deposition of carbon nanotubes on fibers. In: Rafiee, R. (ed.) Carbon nanotube-reinforced polymers, pp. 117–144. Elsevier, Amsterdam (2018)

    Chapter  Google Scholar 

  28. Satisha, G., Prasada, V.V.S., Ramjib, K.: Effect on Mechanical Properties of Carbon Nanotube Based Composite. Materials Today: Proceedings 5(2), 7725–7734 (2018)

    Google Scholar 

  29. Rodríguez-González, J.A., Rubio-González, C.: Influence of sprayed multi-walled carbon nanotubes on mode I and mode II interlaminar fracture toughness of carbon fiber/epoxy composites. Adv Compos Mater 28, 1–36 (2018)

    Article  Google Scholar 

  30. Rodríguez-González, J.A., Rubio-González, C., Jiménez-Mora, M., et al.: Influence of the hybrid combination of multiwalled carbon nanotubes and graphene oxide on interlaminar mechanical properties of carbon fiber/epoxy laminates. Appl Compos Mater 25, 1115–1 (2018)

    Article  Google Scholar 

  31. Rodríguez-González, J.A., Rubio-González, C.: Mixed mode I/II interlaminar fracture toughness of carbon fiber/epoxy composites with the addition of multiwalled carbon nanotubes by spraying technique. J Compos Mater 52, 3045–3052 (2018)

    Article  Google Scholar 

  32. Rodríguez-González, J.A., Rubio-González, C., Meneses-Nochebuena, C.A., et al.: Enhanced interlaminar fracture toughness of unidirectional carbon fiber/epoxy composites modified with sprayed multi-walled carbon nanotubes. Compos Interface 24, 883–896 (2017)

    Article  Google Scholar 

  33. Rodríguez-González, J.A., Rubio-González, C., Soto-Cajiga, J.A.: Piezoresistive response of spray-coated multiwalled carbon nanotubes/glass fiber/epoxy composites under flexural loading. Fibers Polym 20, 1673–1683 (2019)

    Article  Google Scholar 

  34. Rodríguez-González, J.A., Rubio-González, C., Ku-Herrera, J.J.: Influence of seawater ageing on the mechanical and damage selfsensing subjected to flexural loading by means of the electrical resistance approach. Smart Mater Struct 27, 125002 (2018)

    Article  Google Scholar 

  35. Rubio-González, C., José-Trujillo, E., Rodríguez-González, J.A., et al.: Low-velocity impact behavior of glass fiber-MWCNT/polymer laminates exposed to seawater and distilled water aging. Polym Compos 41, 2181–2197 (2020)

    Article  Google Scholar 

  36. Zhang, X., Xiang, D., Wu, Y., Harkin-Jones, E., Shen, J., Ye, Y., Tan, W., Wang, J., Wang, P., Zhao, C., Li, Y.: High-performance flexible strain sensors based on biaxially stretched conductive polymer composites with carbon nanotubes immobilized on reduced graphene oxide. Composites Part A: Applied Science and Manufacturing 151, 106665 (2021)

    Article  CAS  Google Scholar 

  37. Xiang, D., Zhang, X., Li, Y., Harkin-Jones, E., Zheng, Y., Wang, L., Zhao, C., Wang, P.: Enhanced performance of 3D printed highly elastic strain sensors of carbon nanotube/thermoplastic polyurethane nanocomposites via non-covalent interactions. Composites Part B: Engineering 176(1), 107250 (2019)

    Article  CAS  Google Scholar 

  38. Rodríguez-González, J.A., Rubio-González, C.: Seawater effects on interlaminar fracture toughness of glass fiber/epoxy laminates modified with multiwall carbon nanotubes. J Compos Mater 55, 387–400 (2021)

    Article  Google Scholar 

  39. Rodríguez-González, J.A., Rubio-González, C.: Influence of graphene nanoplatelet concentration on the electrical, mechanical, and piezoresistive properties of glass fiber/epoxy composites. Polym Compos 43, 3276–3289 (2022)

    Article  Google Scholar 

  40. Zhang, H., Kuwata, M., Bilotti, E., et al.: Integrated damage sensing in fibre-reinforced composites with extremely low carbon nanotube loadings. J. Nanomater. 2015, 785834 (2015)

    Article  Google Scholar 

  41. Li, Y., Zhang, H., Peijs, T., et al.: Graphene Delivery Systems for Hierarchical Fiber Reinforced Composites. MRS Advances 1, 1339–1344 (2016)

    Article  CAS  Google Scholar 

  42. Kumar, A., Sharma, K., Dixit, A.R.: A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett 31, 149–165 (2021)

    Article  Google Scholar 

  43. José-Trujillo, E., Rubio-González, C., Rodríguez-González, J.A.: Study of seawater effect on the mechanical and thermomechanical properties of hybrid multiwall carbon nanotube/graphene nanoplatelet-glass fiber/epoxy laminates. Polym. Compos. 43, 8673–8686 (2022)

    Article  Google Scholar 

  44. ASTM D5229: Test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials. ASTM International, West Conshohocken, PA (2014)

    Google Scholar 

  45. ASTM D257: Standard test methods for DC resistance or conductance of insulating materials. ASTM International, West Conshohocken (2014)

    Google Scholar 

  46. ASTM D7264: Standard test method for flexural properties of polymer matrix composite materials. ASTM International, West Conshohocken (2015)

    Google Scholar 

  47. Assarar, M., Scida, D., El Mahi, A., Poilâne, C., Ayad, R.: Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: Flax–fibres and glass–fibres. Materials & Design 32(2), 788–795 (2011)

    Article  CAS  Google Scholar 

  48. Zulfli, N.M., Bakar, A.A., Chow, W.S.: Mechanical and water absorption behaviors of carbon nanotube reinforced epoxy/glass fiber laminates. Journal of Reinforced Plastics and Composites 32(22), 1715–1721 (2013)

    Article  Google Scholar 

  49. Guadagno, L., Vertuccio, L.: Resistive response of carbon nanotube-based composites subjected to water aging. Nanomaterials (Basel, Switzerland) 11(9), 2183 (2021)

    Article  CAS  PubMed  Google Scholar 

  50. Morris, D.R.P., Liu, S.P., Gonzalez, D.V., Gostick, J.T.: Effect of Water Sorption on the Electronic Conductivity of Porous Polymer Electrolyte Membrane Fuel Cell Catalyst Layers. ACS Appl. Mater. Interfaces 6(21), 18609–18618 (2014)

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, H., Liu, Y., Huo, S., et al.: Filtration effects of graphene nanoplatelets in resin infusion processes: Problems and possible solutions. Compos Sci Technol 139, 138–145 (2017)

    Article  CAS  Google Scholar 

  52. Yue, L., Pircheraghi, G., Monemian, S.A., et al.: Epoxy composites with carbon nanotubes and graphene nanoplatelets. Dispersion and synergy effects. Carbon 78, 268–278 (2014)

    CAS  Google Scholar 

  53. Bragaglia, M., Paleari, L., Lamastra, F.R.: Graphene nanoplatelet, multiwall carbon nanotube, and hybrid multiwall carbon nanotube–graphene nanoplatelet epoxy nanocomposites as strain sensing coatings. J Reinf Plast Compos 40, 632–643 (2021)

    Article  CAS  Google Scholar 

  54. Zhang, X., Xiang, D., Zhu, W., Zheng, Y., Harkin-Jones, E., Wang, P., Zhao, C., Li, H., Wang, B., Li, Y.: Flexible and high-performance piezoresistive strain sensors based on carbon nanoparticles@polyurethane sponges. Composites Science and Technology 10, 108437 (2020)

    Article  Google Scholar 

  55. Xiang, D., Zhang, Z., Wu, Y., Shen, J., Harkin-Jones, E., Li, Z., Wang, P., Zhao, C., Li, H., Li, Y.: 3D-Printed Flexible Piezoresistive Sensors for Stretching and Out-of-Plane Forces. Macromolecular Materials and Engineering 306, 2100437 (2021)

    Article  CAS  Google Scholar 

  56. Mahadevaswamy, M.B., Aradhya, R., Bhattacharya, S., et al.: Effect of hybrid carbon nanofillers at percolation on electrical and mechanical properties of glass fiber reinforced epoxy. J Appl Polym Sci 139, e52439 (2022)

    Article  Google Scholar 

  57. Zhang, D., Waas, A.M., Yen, C.-F.: Progressive damage and failure response of hybrid 3D textile composites subjected to flexural loading, part I: Experimental studies. Int J Solids Struct 75–76, 309–320 (2015)

    Article  Google Scholar 

  58. Singh, K.K., Chaudhary, S.K., Venugopal, R.: Enhancement of Flexural Strength of Glass Fiber Reinforced Polymer laminates using Multiwall Carbon Nanotubes. Polym Eng Sci 59, E248–E261 (2019)

    Article  CAS  Google Scholar 

  59. Chowdhury, I.R., Nash, N.H., Portela, A., et al.: Analysis of failure modes for a non-crimp basalt fiber reinforced epoxy composite under flexural and interlaminar shear loading. Compos Struct 245, 112317 (2020)

    Article  Google Scholar 

  60. Bian, L., Xiao, J., Zeng, J., et al.: Effects of seawater immersion on water absorption and mechanical properties of GFRP composites. J Compos Mater 46, 3151–62 (2012)

    Article  Google Scholar 

  61. Feng, Y., Cai, R., Zhou, Y.: A high-performance porous flexible composite film sensor for tension monitoring. RSC Adv. 12, 26285 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Starkova, O., Mannov, E., Schulte, K., et al.: Strain-dependent electrical resistance of epoxy/MWCNT composite after hydrothermal aging. Compos Sci Technol 117, 107–113 (2015)

    Article  CAS  Google Scholar 

  63. Ku-Herrera, J.J., Pacheco-Salazar, O.F., Ríos-Soberanis, C.R., Domínguez-Rodríguez, G.: Self-sensing of damage progression in unidirectional multiscale hierarchical composites subjected to cyclic tensile loading. Sensors 16, 400 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gao, L., Thostenson, E.T., Zhang, Z., et al.: Sensing of Damage Mechanisms in Fiber-Reinforced Composites under Cyclic Loading using Carbon Nanotubes. Adv Funct Mater 19, 123–130 (2009)

    Article  CAS  Google Scholar 

  65. Garg, M., Sharma, S., Mehta, R.: Carbon nanotube reinforced glass fiber epoxy composite laminates exposed to hygrothermal conditioning. J Mater Sci 51, 8562–8578 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

Financial support provided by the “Centro Mexicano de Innovación en Energía del Océano” (CEMIE-O) is acknowledged. Technical assistance by M.Sc. J. Antonio Banderas (from CIDESI) is appreciated.

Centro Mexicano de Innovación en Energía Océano,249795

Author information

Authors and Affiliations

Authors

Contributions

Each author contributed to the research presented in this manuscript, approved the contents now presented, and agreed to the compliance with ethical standards.

Corresponding author

Correspondence to Eduardo José-Trujillo.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

José-Trujillo, E., Rubio-González, C. & Rodríguez-González, J.A. Evaluation of the Piezoresistive Response of GFRP with a Combination of MWCNT and GNP Exposed to Seawater Aging. Appl Compos Mater 31, 467–488 (2024). https://doi.org/10.1007/s10443-023-10175-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-023-10175-z

Keywords

Navigation