Skip to main content

Advertisement

Log in

Pathway analysis of host responses to dengue virus serotype 2 infection and inhibition of viral envelope protein by naringenin from Ganoderma lucidum

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Dengue fever cases are spiking over the last two decades. Incessant efforts are still being made to gain deeper insights on this arboviral disease and to identify bioactive antivirals. In this study, bioinformatics analysis was conducted to identify the differentially expressed genes (DEGs) in the expression profiling datasets of dengue virus serotype 2 (DENV2) patients. We found overexpressed genes in dengue patients that can interrupt cell cycle progression and phase transitions of mitosis inside the host to favour the viral replication process. These DEGs were associated with the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways such as cell cycle and DNA replication. A protein interaction network consisting of these significant pathways was also constructed using STRING. Futher, the traditional Chinese medicine (TCM) compounds from Ganoderma lucidum were screened to target DENV2 envelope protein, which was crucial for viral fusion activity. Docking, orbital energy, and toxicity prediction analysis revealed that naringenin was the best antiviral candidate. Following molecular dynamics simulations, the predicted binding energy of the protein–naringenin system using the molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) approach was slightly greater than the control system. It is recommended to perform in vitro inhibition of naringenin against DENV2 and use our findings to complement the experimental data obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abd-Jamil J, Cheah CY and AbuBakar S 2008 Dengue virus type 2 envelope protein displayed as recombinant phage attachment protein reveals potential cell binding sites. Protein Eng. Des. Sel. 21 605–611

    Article  CAS  PubMed  Google Scholar 

  • Abraham MJ, Teemu M, Schulz R, et al. 2015 GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2 19–25

    Article  Google Scholar 

  • Banerjee P, Eckert AO, Schrey AK, et al. 2018 ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acıds Res. 46 257–263

    Article  Google Scholar 

  • Banerjee A, Tripathi A, Duggal S, et al. 2020 Dengue virus ınfection ımpedes megakaryopoiesis in MEG-01 cells where the virus envelope protein ınteracts with the transcription factor TAL-1. Sci. Rep. 10 19587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashir T and Pagano M 2005 CDK1: the dominant sibling of CDK2. Nat. Cell Biol. 7 779–781

    Article  CAS  PubMed  Google Scholar 

  • Batra P, Sharma AK and Khajuria R 2013 Probing lingzhi or reishi medicinal mushroom Ganoderma lucidum (higher basiomycetes): a bitter mushroom with amazing health benefits. Int. J. Med. Mushrooms 15 127–143

    Article  CAS  PubMed  Google Scholar 

  • Bauer P, Hess B and Lindahl E 2022 GROMACS 2022.1 manual (https://doi.org/10.5281/zenodo.6451567)

  • Berendsen HJC, Postma JPM, van Gunsteren WF, et al. 1984 Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81 3684

    Article  CAS  Google Scholar 

  • Boittier ED, Tang YY, Buckley ME, et al. 2020 Assessing molecular docking tools to guide targeted drug discovery of CD38 ınhibitors. Int. J. Mol. Sci. 21 5183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bussi G, Donadio D and Parrinello M 2007 Canonical sampling through velocity rescaling. J. Chem. Phys 126 014101

    Article  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention 2021 Dengue around the world (https://www.cdc.gov/dengue/)

  • Chen CYC 2011 TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One 6 e15939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Maguire T, Hileman RE, et al. 1997 Dengue virus ınfectivity depends on envelope protein binding to target cell heparan sulfate. Nat. Med. 3 866–871

    Article  CAS  PubMed  Google Scholar 

  • Cheng CR, Yue QX, Wu ZY, et al. 2010 Cytotoxic triterpenoids from Ganoderma lucidum. Phytochemistry 71 1573–1585

    Article  Google Scholar 

  • Chong MK and Ng ML 2008 Significance of cell cycle manipulation in the establishment of dengue virus and west nile virus ınfection. Int. J. Inf. Dis. 12 E168

    Article  Google Scholar 

  • Davy CE, Jackson DJ, Raj K, et al. 2005 Human papillomavirus type 16 E1 E4-induced G2 arrest is associated with cytoplasmic retention of active CDK1/cyclin B1 complexes. J. Virol. 79 3998–4011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira Mendes LA, Ponciano CS, Cataneo AHD, et al. 2020 The anti-zika virus and anti-tumoral activity of the citrus flavanone lipophilic naringenin-based compounds. Chem.-Biol. Interact. 331 109218

    Article  Google Scholar 

  • Daina A, Michielin O and Zoete V 2017 SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7 42717

    Article  PubMed  PubMed Central  Google Scholar 

  • Estoppey D, Lee CM, Janoschke M, et al. 2017 The natural product cavinafungin selectively ınterferes with zika and dengue virus replication by inhibition of the host signal peptidase. Cell Rep. 19 451–460

    Article  CAS  PubMed  Google Scholar 

  • Fatriansyah JF, Rizqillah RK and Yandi MY 2022 Molecular docking and molecular dynamics simulation of fisetin, galangin, hesperetin, hesperidin, myricetin, and naringenin against polymerase of dengue virus. J. Trop. Med. 2022 7254990

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng T, Deng L, Lu X, et al. 2018 Ubiquitin-conjugating enzyme UBE2J1 negatively modulates ınterferon pathway and promotes RNA virus ınfection. Virol. J. 15 132

    Article  PubMed  PubMed Central  Google Scholar 

  • Frabasile S, Koishi AC, Kuczera D, et al. 2017 The citrus flavanone naringenin ımpairs dengue virus replication in human cells. Sci. Rep. 7 41864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaussian 09, Revision C.01. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al. Gaussian, Inc., Wallingford CT, 2009.

  • GaussView, Version 5.0.8. Dennington R, Keith T and Millam J. Semichem Inc., Shawnee Mission KS, 2009.

  • Gillespie M, Jassal B, Stephan R, et al. 2022 The Reactome pathway knowledgebase 2022. Nucleic Acids Res. 50 D687–D692

    Article  CAS  PubMed  Google Scholar 

  • Hafirassou ML, Meertens L, Umaña-Diaz C, et al. 2017 A global interactome map of the dengue virus NS1 identifies virus restriction and dependency host factors. Cell Rep. 21 3900–3913

    Article  CAS  PubMed  Google Scholar 

  • Helt AM and Harris E 2005 S-phase-dependent enhancement of dengue virus 2 replication in mosquito cells, but not in human cells. J. Virol. 79 13218–13230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DW, Sherman BT and Lempicki RA 2009 Systematıc and ıntegrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4 44–57

    Article  CAS  PubMed  Google Scholar 

  • Humphrey W, Dalke A and Schulten K 1996 VMD - visual molecular dynamics. J. Mol. Graph. 14 33–38

    Article  CAS  PubMed  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, et al. 2003 Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4 249–264

    Article  PubMed  Google Scholar 

  • Ishtiaq R, Imran A, Raza H, et al. 2018 Acute hepatitis in infections caused by dengue virus in southern Punjab, Pakistan. Cureus 10 e7388

    Google Scholar 

  • Jumper J, Evans R, Pritzel A, et al. 2021 Highly accurate protein structure prediction with AlphaFold. Nature 596 583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M and Goto S 2000 KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28 27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M 2019 Towards understanding the origin and evolution of cellular organisms. Prot. Sci. 28 1947–1951

    Article  CAS  Google Scholar 

  • Kanehisa M, Furumichi M, Sato Y, et al. 2021 KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 49 D545–D551

    Article  CAS  PubMed  Google Scholar 

  • Kannan RP, Hensley LL, Evers LE, et al. 2011 Hepatitis C virus infection causes cell cycle arrest at the level of initiation of mitosis. J. Virol. 85 7989–8001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AM, Heiny AT, Lee KX, et al. 2006 Large-scale analysis of antigenic diversity of t-cell epitopes in dengue virus. BMC Bioinform. 7 S4

    Article  Google Scholar 

  • Knight GL, Turnell AS and Roberts S 2006 Role for Weel1 in ınhibition of G2-to-M transition through the cooperation of distinct human papillomavirus type 1 E4 proteins. J. Virol. 80 7416–7426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kollman PA, Massova I, Reyes C, et al. 2000 Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 33 889–897

    Article  CAS  PubMed  Google Scholar 

  • Korb O, Stützle T and Exner TE 2009 Empirical scoring functions for advanced protein ligand docking with plants. J. Chem. Inf. Model. 49 84–96

    Article  CAS  PubMed  Google Scholar 

  • Kuhn RJ, Zhang W, Rossmann MG, et al. 2002 Structure of dengue virus: ımplications for flavivirus organization, maturation, and fusion. Cell 108 717–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari R, Kumar R, Open Source Drug Discovery Consortium, et al. 2014 g_mmpbsa – A GROMACS tool for high-throughput mm-pbsa calculations. J. Chem. Inf. Model. 54 1951–1962

  • Kwissa M, Nakaya HI, Onlamoon N, et al. 2014 Dengue virus ınfection ınduces expansion of a CD14(+)CD16(+) monocyte population that stimulates plasmablast differentiation. Cell Host Microbe 16 115–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon T, Chung MI, Gupta R, et al. 2014 Identifying direct targets of transcription factor rfx2 that coordinate ciliogenesis and cell movement. Genom. Data 2 192–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, et al. 1993 PROCHECK – a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26 283–291

    Article  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW and Thornton JM 2001 PROCHECK: validation of protein structure coordinates; in International tables of crystallography, volume F. Crystallography of biological macromolecules (Eds) MG Rossmann MG and E Arnold (Dordrecht, Kluwer Academic Publishers) pp 722–725

  • Laskowski RA, Jablonsla J, Pravda L, et al. 2018 PDBsum: Structural summaries of PDB entries. Prot. Sci. 27 129–134

    Article  CAS  Google Scholar 

  • Lazaridis T and Karplus M 1999 Effective energy function for proteins in solution. Proteins 35 133–152

    Article  CAS  PubMed  Google Scholar 

  • Laskwoski RA and Swindells MB 2011 LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51 2778–2786

    Article  Google Scholar 

  • Le Novère N, Hucka M, Mi H, et al. 2009 The systems biology graphical notation. Nat. Biotechnol. 27 735–741

    Article  PubMed  Google Scholar 

  • Li CJ and DePamphilis ML 2002 Mammalian ORC1 protein is selectively released from chromatin and ubiquitinated during the S-to-M transition in the cell division cycle. Mol. Cell. Biol. 22 105–116

    Article  PubMed  PubMed Central  Google Scholar 

  • Liaci AM, Steigenberger B, de Souza PCT, et al. 2021 Structure of the human signal peptidase complex reveals the determinants for signal peptide cleavage. Mol. Cell 81 3934–3948

    Article  CAS  PubMed  Google Scholar 

  • Lim WZ, Cheng PG, Abdulrahman AY, et al. 2020 The ıdentification of active compounds in Ganoderma lucidum var. antler extract ınhibiting dengue virus serine protease and ıts computational studies. J. Biomol. Struct. Dyn. 38 4273–4288

    Article  CAS  PubMed  Google Scholar 

  • Lindahl E, Abraham MJ, Hess B and van der Spoel D 2021 GROMACS 2021.2 manual (https://doi.org/10.5281/zenodo.4723561)

  • Luh DL, Liu CC, Luo YR, et al. 2018 Economic cost and burden of dengue during epidemics and non-epidemic years in Taiwan. J. Infect. Public Health 11 215–223

    Article  PubMed  Google Scholar 

  • Luqman M, Sattar T, Farid S, et al. 2013 Effects of dengue ıncidence on socio-economic status of patient’s family: a comparative analysis of Multan and Lahore City (Pakistan). J. Econ. Sustain. Dev. 4 28–40

    Google Scholar 

  • Ma HT, Hsieh JF and Chen ST 2015 Anti-diabetic effects of Ganoderma lucidum. Phytochemistry 114 109–113

    Article  CAS  PubMed  Google Scholar 

  • Mackerell AD Jr, Bashford D, Bellott M, et al. 1998 All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102 3586–3616

    Article  CAS  PubMed  Google Scholar 

  • Méndez J, Zou-Yang XH, Kim S-Y, et al. 2002 Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after ınitiation of DNA replication. Mol. Cell 9 481–491

    Article  PubMed  Google Scholar 

  • Mesev EV, LeDesma RA and Ploss A 2019 Decoding type ı and ııı ınterferon signalling during viral ınfection. Nat. Microbiol. 4 914–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modis Y, Ogata S, Clements D, et al. 2004a Structure of the dengue virus envelope protein after membrane fusion. Nature 427 313–319

    Article  CAS  PubMed  Google Scholar 

  • Modis Y, Ogata S, Clements D, et al. 2004b A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci USA. 100 6986–6991

    Article  Google Scholar 

  • Mongan JJ, Andreas Svrcek-Seiler W and Onufriev A 2007 Analysis of ıntegral expressions for effective born radii. J. Chem. Phys. 127 185101

    Article  PubMed  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, et al. 2009 AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30 2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Sánchez E, Desprès P and Cedillo-Barrón L 2005 Innate ımmune responses to dengue virus. Arch. Med. Res. 36 425–435

    Article  PubMed  Google Scholar 

  • Packierisamy PR, Ng CW, Dahlui M, et al. 2015 Cost of dengue vector control activities in Malaysia. Am. J. Trop. Med. 93 1020–1027

    Article  Google Scholar 

  • Pang X, Zhou L, Zhang L, et al. 2012 Two rules on the protein-ligand interaction. Open Conf. Proc. J. 3 70–80

  • Parida MM, Upadhyay CU, Pandya G, et al. 2002 Inhibitory potential of neem (Azadirachta indica Juss) leaves on dengue virus type-2 replication. J. Ethnopharmacol. 79 273–278

    Article  CAS  PubMed  Google Scholar 

  • Parrinello M and Rahman A 1981 Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52 7182–7190

    Article  CAS  Google Scholar 

  • Pérez-Olais JH, Ruiz-Jiménez F, Calderón-Garcia EJ, et al. 2019 The activity of aurora kinase b is required for dengue virus release. Virus Res. 274 197777

    Article  PubMed  Google Scholar 

  • Popper SJ, Strouts FR, Lindow JC, et al. 2018 Early transcriptional response after dengue vaccination mirror the response to natural ınfection and predict neutralizing antibody titers. J. Infect. Dis. 218 1911–1921

    Article  PubMed  PubMed Central  Google Scholar 

  • Quirino-Teixeira AC, Andrade FB, Pinheiro MBM, et al. 2022 Platelets in dengue ınfection: more than a numbers game. Platelets 33 176–183

    Article  CAS  PubMed  Google Scholar 

  • R Core Team 2021 R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria) (https://www.R-project.org/)

  • Rode AV, Christy AG, Gamaly EG, et al. 2006 Magnetic properties of novel carbon allotropes; in Carbon-based magnetism (Eds) T Makarova and F Palacio (Elsevier BV) pp 463–486

  • Rey FA 2003 Dengue virus envelope glycoprotein structure: new ınsight into its ınteraction during viral entry. Proc. Natl. Acad. Sci. USA 100 6899–6901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roehrig JT, Bolin RA and Kelly RG 1998 Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology 246 317–328

    Article  CAS  PubMed  Google Scholar 

  • Saleh MS and Kamisah Y 2021 Potential medicinal plants for the treatment of dengue fever and sever acute respiratory syndrome-coronavirus. Biomolecules 11 42

    Article  CAS  Google Scholar 

  • Sánchez MD, Pierson TC, DeGrace MM, et al. 2007 The neutralizing antibody response against West Nile virus in naturally ınfected horses. Vırology 359 336–348

    Article  PubMed  Google Scholar 

  • Sarala M and Paknikar SS 2014 Papaya extract to treat dengue? A novel therapeutic option? Ann. Med. Res. 4 320–324

    CAS  Google Scholar 

  • Sathyapalan DT, Moni M, Padmanabhan A, et al. 2020 Efficacy & safety of Carica papaya leave extract (CPLE) in severe thrombocytopenia (≤30,000/μl) in adult dengue – results of a pilot study. PLOS One 15 e0228699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrödinger L and DeLano W 2020 PyMOL (http://www.pymol.org/pymol)

  • Shepard DS, Undurraga EA and Halasa YA 2013 Economic and disease burden of dengue in southeast Asia. PLoS Negl. Trop. Dis. 7 e2055

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherman BT, Hao M, Qiu J, et al. 2022 DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 50 W216–W221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva A, Morais SM, Marques MMM, et al. 2011 Antiviral activities of extracts and phenolic components of two Spondias species against dengue virus. J. Venom. Anim. Toxins Incl. Trop. Dis. 17 406-413

  • Sippl MJ 1993 Recognition of errors in three-dimensional structures of proteins. Proteins 17 355–362

    Article  CAS  PubMed  Google Scholar 

  • Song G, Lee EM, Pan J, et al. 2021 An integrated systems biology approach identifies the proteasome as a critical host machinery for ZIKV and DENV replication. Genom. Proteom. Bioinf. 19 108–122

    Article  Google Scholar 

  • Sudheer S, Alzorqi I, Ali A, et al. 2018 Determination of the biological efficiency and antioxidant potential of lingzhi or reishi medicine mushroom, Ganoderma lucidum (agaricomycetes), cultivated using different agro-wastes in Malaysia. Int. J. Med. Mushrooms 20 89–100

    Article  PubMed  Google Scholar 

  • Tambunan USF, Zahroh H, Parikesit AA, et al. 2015 Screening analogs of β-OG pocket binder as fusion ınhibitor of dengue virus 2. Drug Target Insights 9 33–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Texeira LK and Reed SI 2017 Cyclin E deregulation and genomic ınstability. Adv. Exp. Med. Bio. 1042 527–547

    Article  Google Scholar 

  • The Gene Ontology Consortium, Ashburner M, Ball CA, et al. 2000 Gene ontology: tool for the unification of biology. Nat. Genet. 25 25–29

    Article  PubMed Central  Google Scholar 

  • The Gene Ontology Consortium 2020 The gene ontology resource: enriching the gold mine. Nucleic Acids Res. 49 D325–D334

    Article  Google Scholar 

  • Thullier P, Demangel C, Bedouelle H, et al. 2001 Mapping of a dengue virus neutralizing epitope critical for the infectivity of all serotypes: insight into the neutralization mechanism. J. Gen. Virol. 82 1885–1892

    Article  CAS  PubMed  Google Scholar 

  • Tian Y-S, Zhou Y, Takagi T, et al. 2018 Dengue virus and ıts ınhibitors: a brief review. Chem. Pharm. Bull. 66 191–206

    Article  CAS  Google Scholar 

  • Trott O and Olson AJ 2010 AutoDock vina: ımproving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31 455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai TY, Chang KW and Chen CYC 2011 iScreen: world’s first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan. J. Comput. Aided Mol. Des. 25 525–531

    Article  CAS  PubMed  Google Scholar 

  • Undurraga EA, Betancourt-Cravioto M, Ramos-Castañeda J, et al. 2015 Economic and disease burden of dengue in Mexico. PLoS Negl. Trop. Dis. 9 e0003547

    Article  PubMed  PubMed Central  Google Scholar 

  • United Nations Development Programme 2017 A socio-economic ımpact assessment of the zika virus in Latin America and the Caribbean: with a focus on Brazil, Colombia and Suriname (https://www.undp.org/publications/socio-economic-impact-assessment-zika-virus-latin-america-and-caribbean)

  • Unıted Nations Economic Commission for Europe 2013 Globally harmonized system for the classification and labeling of chemicals (GHS), part 3, health hazards (http://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev05/English/03e_part3.pdf)

  • Vázquez-Calvo Á, de Oya NJ, Martín-Acebes MA, et al. 2017 Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses West Nile virus, Zika virus, and dengue virus. Front. Microbiol. 8 1314

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagoner JA and Baker NA 2006 Assessing ımplicit models for nonpolar mean solvation forces: the ımportance of dispersion and volume terms. Proc. Natl. Acad. Sci. USA 103 8331–8336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Yoshida I, Takamatsu M, et al. 2000 Complex formation between hepatitis C virus core protein and p21waf1/cip1/sdi1. Biochem. Biophys. Res. Commun. 273 479–484

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Griffin H, Southern S, et al. 2004 Functional analysis of the human papillomavirus type 16 E1=E4 protein provides a mechanism for in vivo and in vitro keratin filament reorganization. J. Virol. 78 821–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb B and Sali A 2016 Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinform. 54 5.6.1–5.6.37

  • Wiederstein M and Sippl MJ 2007 ProSA-web: ınteractive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35 W407–W410

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong Y, Dewdney TG, Liu Z, et al. 2012 Higher desolvation energy reduces molecular recognition in multi-drug resistant HIV-1 protease. Biology 1 81–93

    Article  Google Scholar 

  • World Health Organization 2022 Dengue and severe dengue (https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue)

  • Wu YL, Han F, Luan SS, et al. 2019 Triterpenoids from Ganoderma lucidum and their potential anti-inflammatory effects. J. Agric. Food Chem. 67 5147–5158

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Xiao C, Xu H, et al. 2021 Anti-inflammatory effects of Ganoderma lucidum sterols via attenuation of the p38 MAPK and NF-κB pathways in LPS-induced RAW 264.7 macrophages. Food Chem. Toxicol. 150 112073

  • Yu Y, Krämer A, Venable RM, et al. 2021 CHARMM36 lipid force field with explicit treatment of long-range dispersion: parameterization and validation for phosphatidylethanolamine, phosphatidylglycerol, and ether lipids. J. Chem. Theory Comput. 17 1581–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Tao J, Yang X, et al. 2014 Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 ınfection. Biochem. Biophys. Res. Commun. 449 307–312

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Wu H, Liu C, et al. 2021 Identification of covıd-19 and dengue host factor ınteraction networks based on ıntegrative bioinformatics analyses. Front. Immunol. 12 707287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Bang TH, Ohnuki K, et al. 2015 Inhibition of neuraminidase by Ganoderma triterpenoids and ımplications for neuraminidase ınhibitor design. Sci. Rep. 5 13194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoete V, Cuendet MA, Grosdidier A, et al. 2011 SwissParam: a fast force field generation tool for small organic molecules. J. Comput. Chem. 32 2359–2368

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support given by the Malaysian Ministry of Higher Education (MOHE) TRGS Grant (TR001B-2014B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teow Chong Teoh.

Additional information

Corresponding editor: Saumitra Das

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 261 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, W.Z., Chang, S.W. & Teoh, T.C. Pathway analysis of host responses to dengue virus serotype 2 infection and inhibition of viral envelope protein by naringenin from Ganoderma lucidum. J Biosci 48, 49 (2023). https://doi.org/10.1007/s12038-023-00370-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-023-00370-2

Keywords

Navigation