Skip to main content
Log in

Immunohistochemical characterisation of the adult Nothobranchius furzeri intestine

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Nothobranchius furzeri is emerging as an exciting vertebrate organism in the field of biomedicine, developmental biology and ecotoxicology research. Its short generation time, compressed lifespan and accelerated ageing make it a versatile model for longitudinal studies with high traceability. Although in recent years the use of this model has increased enormously, there is still little information on the anatomy, morphology and histology of its main organs. In this paper, we present a description of the digestive system of N. furzeri, with emphasis on the intestine. We note that the general architecture of the intestinal tissue is shared with other vertebrates, and includes a folding mucosa, an outer muscle layer and a myenteric plexus. By immunohistochemical analysis, we reveal that the mucosa harbours the same type of epithelial cells observed in mammals, including enterocytes, goblet cells and enteroendocrine cells, and that the myenteric neurons express neurotransmitters common to other species, such as serotonin, substance P and tyrosine hydroxylase. In addition, we detect the presence of a proliferative compartment at the base of the intestinal folds. The description of the normal intestinal morphology provided here constitutes a baseline information to contrast with tissue alterations in future lines of research assessing pathologies, ageing-related diseases or damage caused by toxic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aghaallaei N, Gruhl F, Schaefer CQ, Wernet T, Weinhardt V, Centanin L, Loosli F, Baumbach T, Wittbrodt J (2016) Identification, visualization and clonal analysis of intestinal stem cells in fish. Development (Cambridge, England) 143:3470–3480

    PubMed  CAS  Google Scholar 

  • Anlauf M, Schäfer MK, Eiden L, Weihe E (2003) Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol 459:90–111

    Article  PubMed  CAS  Google Scholar 

  • Bagnoli S, Fronte B, Bibbiani C, Terzibasi Tozzini E, Cellerino A (2022) Quantification of noradrenergic-, dopaminergic-, and tectal-neurons during aging in the short-lived killifish Nothobranchius furzeri. Aging Cell 21:e13689. https://doi.org/10.1111/acel.13689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baumgart M, Priebe S, Groth M, Hartmann N, Menzel U, Pandolfini L, Koch P, Felder M, Ristow M, Englert C, Guthke R, Platzer M, Cellerino A (2016) Longitudinal RNA-Seq analysis of vertebrate aging identifies mitochondrial complex I as a small-molecule-sensitive modifier of lifespan. Cell Syst 2:122–132

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten HG, Björklund A, Lachenmayer L, Nobin A, Rosengren E (1973) Evidence for the existence of serotonin-, dopamine-, and noradrenaline-containing neurons in the gut of Lampetra fluviatilis. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie 141:33–54

    Article  PubMed  CAS  Google Scholar 

  • Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C, O’Donnell TA, Brierley SM, Ingraham HA, Julius D (2017) Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170:185–198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bohórquez DV, Shahid RA, Erdmann A, Kreger AM, Wang Y, Calakos N, Wang F, Liddle RA (2015) Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Investig 125:782–786

    Article  PubMed  PubMed Central  Google Scholar 

  • Borgonovo J, Ahumada-Galleguillos P, Oñate-Ponce A, Allende-Castro C, Henny P, Concha ML (2021) Organization of the catecholaminergic system in the short-lived fish Nothobranchius furzeri. Front Neuroanat 15:728720. https://doi.org/10.3389/fnana.2021.728720

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro LF, Gonçalves O, Mazan S, Tay BH, Venkatesh B, Wilson JM (2013) Recurrent gene loss correlates with the evolution of stomach phenotypes in gnathostome history. Proc Biol Sci 281(1775):20132669. https://doi.org/10.1098/rspb.2013.2669

    Article  PubMed  CAS  Google Scholar 

  • Ceccotti C, Giaroni C, Bistoletti M, Viola M, Crema F, Terova G (2018) Neurochemical characterization of myenteric neurons in the juvenile gilthead sea bream (Sparus aurata) intestine. PLoS ONE 13(8):e0201760. https://doi.org/10.1371/journal.pone.0201760

    Article  PubMed Central  CAS  Google Scholar 

  • Chang WW, Nadler NJ (1975) Renewal of the epithelium in the descending colon of the mouse. IV. Cell population kinetics of vacuolated-columnar and mucous cells. Am J Anat 144:39–56

    Article  PubMed  CAS  Google Scholar 

  • Cheng H (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. II. Mucous cells. Am J Anat 141:481–501

    Article  CAS  Google Scholar 

  • Cinar K, Senol N, Ozen MR (2006) Immunohistochemical study on distribution of endocrine cells in gastrointestinal tract of flower fish (Pseudophoxinus antalyae). World J Gastroenterol 12:6874–6878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crosnier C, Vargesson N, Gschmeissner S, Ariza-McNaughton L, Morrison A, Lewis J (2005) Delta-Notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development 132:1093–1104

    Article  CAS  Google Scholar 

  • Dezfuli BS, Pironi F, Campisi M, Shinn AP, Giari L (2010) The response of intestinal mucous cells to the presence of enteric helminths: their distribution, histochemistry and fine structure. J Fish Dis 33:481–488

    Article  PubMed  CAS  Google Scholar 

  • Dolfi L, Ripa R, Antebi A, Valenzano DR, Cellerino A (2019) Cell cycle dynamics during diapause entry and exit in an annual killifish revealed by FUCCI technology. EvoDevo 10:29. https://doi.org/10.1186/s13227-019-0142-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dyková I, Žák J, Blažek R, Reichard M, Součková K, Slabý O (2022) Histology of major organ systems of Nothobranchius fishes: short-lived model species. J Vertebr Biol 71:21074. https://doi.org/10.25225/jvb.21074

    Article  Google Scholar 

  • Esfandiyari K, Pfeifer LJ, Farahani MA, Malakpour Kolbadinezhad S, Castro LF, Wilson JM (2022) The gastric proton pump in gobiid and mudskipper fishes. Evidence of stomach loss? Comp Biochem Physiol Part A Mol Integr Physiol 274:111300. https://doi.org/10.1016/j.cbpa.2022.111300

    Article  CAS  Google Scholar 

  • Ezeasor DN, Stokoe WM (1981) Light and electron microscopic studies on the absorptive cells of the intestine, caeca and rectum of the adult rainbow trout, Salmo gairdneri, Rich. J Fish Biol 18:527–544

    Article  Google Scholar 

  • Fugi R, Agostinho AA, Hahn NS (2001) Trophic morphology of five benthic-feeding fish species of a tropical floodplain. Braz J Biol 61:27–33

    PubMed  CAS  Google Scholar 

  • Fuglem B, Jirillo E, Bjerkås I, Kiyono H, Nochi T, Yuki Y, Raida M, Fischer U, Koppang EO (2010) Antigen-sampling cells in the salmonid intestinal epithelium. Dev Comp Immunol 34:768–774

    Article  CAS  Google Scholar 

  • Genade T, Benedetti M, Terzibasi E, Roncaglia P, Valenzano DR, Cattaneo A, Cellerino A (2005) Annual fishes of the genus Nothobranchius as a model system for aging research. Aging Cell 4:223–233

    Article  PubMed  CAS  Google Scholar 

  • Giaquinto D, De Felice E, Attanasio C, Palladino A, Schiano V, Mollo E, Lucini C, de Girolamo P, D’Angelo L (2022) Central and peripheral NPY age-related regulation: a comparative analysis in fish translational models. Int J Mol Sci 23(7):3839. https://doi.org/10.3390/ijms23073839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grant TD, Specian RD (1998) Proliferation of goblet cells and vacuolated cells in the rabbit distal colon. Anat Rec 252:41–48

    Article  PubMed  CAS  Google Scholar 

  • Gribble FM, Reimann F (2016) Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu Rev Physiol 78:277–299

    Article  PubMed  CAS  Google Scholar 

  • Harder W (1975) Anatomy of fishes. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Harel I, Valenzano DR, Brunet A (2016) Efficient genome engineering approaches for the short-lived African turquoise killifish. Nat Protoc 11:2010–2028

    Article  CAS  Google Scholar 

  • Hartmann N, Reichwald K, Lechel A, Graf M, Kirschner J, Dorn A, Terzibasi E, Wellner J, Platzer M, Rudolph KL, Cellerino A, Englert C (2009) Telomeres shorten while Tert expression increases during ageing of the short-lived fish Nothobranchius furzeri. Mech Ageing Dev 130:290–296

    Article  PubMed  CAS  Google Scholar 

  • Holmgren S, Grove DJ, Nilsson S (1985) Substance P acts by releasing 5-hydroxytryptamine from enteric neurons in the stomach of the rainbow trout, Salmo gairdneri. Neuroscience 14:683–693

    Article  PubMed  CAS  Google Scholar 

  • Holmgren S, Olsson C (2009) The neuronal and endocrine regulation of gut function. Fish neuroendocrinology. Academic Press, Amsterdam, pp 467–512

    Chapter  Google Scholar 

  • Iwai T (1969) Fine structure of gut epithelial cells of larval and juvenile carp during absorption of fat and protein. Archivum Histologicum Japonicum = Nihon Soshikigaku Kiroku 30:183–199

    Article  PubMed  CAS  Google Scholar 

  • James DM, Kozol RA, Kajiwara Y, Wahl AL, Storrs EC, Buxbaum JD, Klein M, Moshiree B, Dallman JE (2019) Intestinal dysmotility in a zebrafish (Danio rerio) shank3a; shank3b mutant model of autism. Mol Autism 10:3. https://doi.org/10.1186/s13229-018-0250-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen J, Holmgren S (1985) Neurotransmitters in the intestine of the Atlantic cod, Gadus morhua. Comp Biochem Physiol C Comp Pharmacol Toxicol 82:81–89

    Article  PubMed  CAS  Google Scholar 

  • Jensen J, Holmgren S (1991) Tachykinins and intestinal motility in different fish groups. Gen Comp Endocrinol 83:388–396

    Article  PubMed  CAS  Google Scholar 

  • Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM, Shen X, Bohórquez DV (2018) A gut-brain neural circuit for nutrient sensory transduction. Science 361(6408):eaat5236. https://doi.org/10.1126/science.aat5236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karila P, Shahbazi F, Jensen J, Holmgren S (1998) Projections and actions of tachykininergic, cholinergic, and serotonergic neurones in the intestine of the Atlantic cod. Cell Tissue Res 291:403–413

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa T (1989) 5-Hydroxytryptamine is a possible neurotransmitter of the non-cholinergic excitatory nerves in the longitudinal muscle of rainbow trout stomach (Salmo gairdneri). Br J Pharmacol 98:781–790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koelz HR (1992) Gastric acid in vertebrates. Scand J Gastroenterol 193:2–6

    Article  CAS  Google Scholar 

  • Koo A, Fothergill LJ, Kuramoto H, Furness JB (2021) 5HT containing enteroendocrine cells characterised by morphologies, patterns of hormone co-expression, and relationships with nerve fibres in the mouse gastrointestinal tract. Histochem Cell Biol 155:623–636

    Article  PubMed  CAS  Google Scholar 

  • Kramer A, Kovačić M, Patzner RA (2012) Dentition of eight species of Mediterranean Sea Gobiidae: do dentition characters of gobies reflect phylogenetic relationships? J Fish Biol 80:29–48

    Article  PubMed  CAS  Google Scholar 

  • Kuramoto H, Koo A, Fothergill LJ, Hunne B, Yoshimura R, Kadowaki M, Furness JB (2021) Morphologies and distributions of 5HT containing enteroendocrine cells in the mouse large intestine. Cell Tissue Res 384:275–286

    Article  PubMed  CAS  Google Scholar 

  • Le HTMD, Lie KK, Giroud-Argoud J, Rønnestad I, Sæle Ø (2019) Effects of cholecystokinin (CCK) on gut motility in the stomachless fish ballan wrasse (Labrus bergylta). Frontiers Neurosci 13:553. https://doi.org/10.3389/fnins.2019.00553

    Article  Google Scholar 

  • Lev R, Spicer SS (1964) Specific staining of sulphate groups with alcian blue at low pH. J Histochem Cytochem 12(4):309. https://doi.org/10.1177/12.4.309

    Article  CAS  Google Scholar 

  • Li ZS, Pham TD, Tamir H, Chen JJ, Gershon MD (2004) Enteric dopaminergic neurons: definition, developmental lineage, and effects of extrinsic denervation. J Neurosci 24:1330–1339

    Article  PubMed Central  CAS  Google Scholar 

  • Lickwar CR, Camp JG, Weiser M, Cocchiaro JL, Kingsley DM, Furey TS, Sheikh SZ, Rawls JF (2017) Genomic dissection of conserved transcriptional regulation in intestinal epithelial cells. PLoS Biol 15(8):e2002054. https://doi.org/10.1371/journal.pbio.2002054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luna LG (1968) Manual of histological staining methods of the armed forces. Institute of Pathology, Blakiston Division, McGraw-Hill, New York

    Google Scholar 

  • Matsui H, Kenmochi N, Namikawa K (2019) Age- and α-Synuclein-dependent degeneration of dopamine and noradrenaline neurons in the annual killifish Nothobranchius furzeri. Cell Rep 26:1727–1733

    Article  PubMed  CAS  Google Scholar 

  • Medinas DB, Rozas P, Martínez Traub F, Woehlbier U, Brown RH, Bosco DA, Hetz C (2018) Endoplasmic reticulum stress leads to accumulation of wild-type SOD1 aggregates associated with sporadic amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 115:8209–8214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moffatt K, Rossi M, Park E, Svendsen JC, Wilson JM (2022) Inhibition of gastric acid secretion with omeprazole affects fish specific dynamic action and growth rate: implications for the development of phenotypic stomach loss. Front Physiol 13:966447. https://doi.org/10.3389/fphys.2022.966447

    Article  PubMed  PubMed Central  Google Scholar 

  • Montesano A, Baumgart M, Avallone L, Castaldo L, Lucini C, Tozzini ET, Cellerino A, D’Angelo L, de Girolamo P (2019) Age-related central regulation of orexin and NPY in the short-lived African killifish Nothobranchius furzeri. J Comp Neurol 527:1508–1526

    Article  PubMed  CAS  Google Scholar 

  • Muncan V, Faro A, Haramis AP, Hurlstone AF, Wienholds E, van Es J, Korving J, Begthel H, Zivkovic D, Clevers H (2007) T-cell factor 4 (Tcf7l2) maintains proliferative compartments in zebrafish intestine. EMBO Rep 8:966–973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olsson C (2009) Autonomic innervation of the fish gut. Acta Histochem 111:185–195

    Article  Google Scholar 

  • Olsson C (2011) Calbindin immunoreactivity in the enteric nervous system of larval and adult zebrafish (Danio rerio). Cell Tissue Res 344:31–40

    Article  PubMed  CAS  Google Scholar 

  • Olsson C (2016) Tyrosine hydroxylase immunoreactivity is common in the enteric nervous system in teleosts. Cell Tissue Res 364:231–243

    Article  PubMed  CAS  Google Scholar 

  • Olsson C, Holmberg A, Holmgren S (2008) Development of enteric and vagal innervation of the zebrafish (Danio rerio) gut. J Comp Neurol 508:756–770

    Article  PubMed  Google Scholar 

  • Palma K, Signore IA, Meynard MM, Ibarra J, Armijo-Weingart L, Cayuleo M, Härtel S, Concha ML (2022) Ontogenesis of the asymmetric parapineal organ in the zebrafish epithalamus. Front Cell Dev Biol 10:999265. https://doi.org/10.3389/fcell.2022.999265

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan QS, Fang ZP, Zhao YX (2000) Immunocytochemical identification and localization of APUD cells in the gut of seven stomachless teleost fishes. World J Gastroenterol 6:96–101

    Article  PubMed Central  Google Scholar 

  • Parenti L, Thomas KR (1998) Pharyngeal jaw morphology and homology in Sicydiine Gobies (Teleostei: Gobiidae) and allies. J Morphol 237:257–274

    Article  PubMed  Google Scholar 

  • Park Y, Zhang Q, Wiegertjes GF, Fernandes JMO, Kiron V (2020) Adherent intestinal cells from atlantic salmon show phagocytic ability and express macrophage-specific genes. Front Cell Dev Biol 8:580848. https://doi.org/10.3389/fcell.2020.580848

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereira RT, Nebo C, de Paula NL, Fortes-Silva R, Cardoso R, de Oliveira I, Paulino RR, Drummond CD, Rosa PV (2020) Distribution of goblet and endocrine cells in the intestine: a comparative study in Amazonian freshwater Tambaqui and hybrid catfish. J Morphol 281:55–67

    Article  PubMed  Google Scholar 

  • Pereiro L, Loosli F, Fernández J, Härtel S, Wittbrodt J, Concha ML (2017) Gastrulation in an annual killifish: Molecular and cellular events during germ layer formation in Austrolebias. Dev Dyn 246:812–826

    Article  PubMed  CAS  Google Scholar 

  • Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14:141–153

    Article  PubMed  CAS  Google Scholar 

  • Philippe C, Thoré ESJ, Verbesselt S, Grégoir AF, Brendonck L, Pinceel T (2022) Combined effects of global warming and chlorpyrifos exposure on the annual fish Nothobranchius furzeri. Ecotoxicol Environ Saf 248:114290. https://doi.org/10.1016/j.ecoenv.2022.114290

    Article  PubMed  CAS  Google Scholar 

  • Picchietti S, Miccoli A, Fausto AM (2021) Gut immunity in European sea bass (Dicentrarchus labrax): a review. Fish Shellfish Immunol 108:94–108. https://doi.org/10.1016/j.fsi.2020.12.001

    Article  PubMed  CAS  Google Scholar 

  • Reig G, Cerda M, Sepúlveda N, Flores D, Castañeda V, Tada M, Härtel S, Concha ML (2017) Extra-embryonic tissue spreading directs early embryo morphogenesis in killifish. Nat Commun 8:15431. https://doi.org/10.1038/ncomms15431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 5:1595–1608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rombout JH, Abelli L, Picchietti S, Scapigliati G, Kiron V (2011) Teleost intestinal immunology. Fish Shellfish Immunol 31:616–626

    Article  CAS  Google Scholar 

  • Rombout JH, Lamers CH, Helfrich MH, Dekker A, Taverne-Thiele JJ (1985) Uptake and transport of intact macromolecules in the intestinal epithelium of carp (Cyprinus carpio L.) and the possible immunological implications. Cell Tissue Res 239:519–530

    Article  PubMed  CAS  Google Scholar 

  • Rozas P, Pinto C, Martínez Traub F, Díaz R, Pérez V, Becerra D, Ojeda P, Ojeda J, Wright MT, Mella J, Plate L, Henríquez JP, Hetz C, Medinas DB (2021) Protein disulfide isomerase ERp57 protects early muscle denervation in experimental ALS. Acta Neuropathol Commun 9(1):21. https://doi.org/10.1186/s40478-020-01116-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salinas I (2015) The mucosal immune system of teleost fish. Biology 4:525–539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sann H, Hoppe S, Baldwin L, Grundy D, Schemann M (1998) Presence of putative neurotransmitters in the myenteric plexus of the gastrointestinal tract and in the musculature of the urinary bladder of the ferret. Neurogastroenterol Motil 10:35–47

    Article  PubMed  CAS  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  PubMed  CAS  Google Scholar 

  • Smit H (1968) Gastric secretion in the lower vertebrates and birds. In: Handbook of physiology section 6 alimentary canal Vol. V bile, digestion, ruminal physiology. American Physiological Society, Washington DC, pp 2791–2805

  • Smith P, Willemsen Popkes M, Metge F, Gandiwa E, Reichard M, Valenzano DR (2017) Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. eLife 6:e27014. https://doi.org/10.7554/eLife.27014

    Article  PubMed  PubMed Central  Google Scholar 

  • Sommer F, Bäckhed F (2013) The gut microbiota-masters of host development and physiology. Nat Rev Microbiol 11:227–238

    Article  PubMed  CAS  Google Scholar 

  • Stevens CE, Hume ID (2004) Comparative physiology of the vertebrate digestive system. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • Stroband HWJ, vd Veen FH, (1981) The localization of protein absorption during the transport of food along the intestine of the grasscarp, Ctenopharyngodon idella (val.). J Exp Zool 218:149–156

    Article  CAS  Google Scholar 

  • Sundell KS, Sundh H (2012) Intestinal fluid absorption in anadromous salmonids: importance of tight junctions and aquaporins. Front Physiol. https://doi.org/10.3389/fphys.2012.00388

    Article  PubMed  PubMed Central  Google Scholar 

  • Takashima S, Gold D, Hartenstein V (2013) Stem cells and lineages of the intestine: a developmental and evolutionary perspective. Dev Genes Evol 223:85–102

    Article  PubMed  Google Scholar 

  • Thoré ESJ, Philippe C, Brendonck L, Pinceel T (2021) Towards improved fish tests in ecotoxicology - efficient chronic and multi-generational testing with the killifish Nothobranchius furzeri. Chemosphere 273:129697. https://doi.org/10.1016/j.chemosphere.2021.129697

    Article  CAS  Google Scholar 

  • Tozzini ET, Baumgart M, Battistoni G, Cellerino A (2012) Adult neurogenesis in the short-lived teleost Nothobranchius furzeri: localization of neurogenic niches, molecular characterization and effects of aging. Aging Cell 11:241–251

    Article  PubMed  CAS  Google Scholar 

  • Uyttebroek L, Shepherd IT, Harrisson F, Hubens G, Blust R, Timmermans JP, Van Nassauw L (2010) Neurochemical coding of enteric neurons in adult and embryonic zebrafish (Danio rerio). J Comp Neurol 518:4419–4438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uyttebroek L, Shepherd IT, Hubens G, Timmermans JP, Van Nassauw L (2013) Expression of neuropeptides and anoctamin 1 in the embryonic and adult zebrafish intestine, revealing neuronal subpopulations and ICC-like cells. Cell Tissue Res 354:355–370

    Article  PubMed  CAS  Google Scholar 

  • Valdesalici S, Cellerino A (2003) Extremely short lifespan in the annual fish Nothobranchius furzeri. Proc Biol Sci 270:189–191

    Article  Google Scholar 

  • Valenzano DR, Terzibasi E, Cattaneo A, Domenici L, Cellerino A (2006a) Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri. Aging Cell 5:275–278

    Article  PubMed  CAS  Google Scholar 

  • Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A (2006b) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16:296–300

    Article  PubMed  CAS  Google Scholar 

  • Verdile N, Pasquariello R, Scolari M, Scirè G, Brevini TL, Gandolfi F (2020) A detailed study of rainbow trout (Onchorhynchus mykiss) intestine revealed that digestive and absorptive functions are not linearly distributed along its length. Animals 10(4):745. https://doi.org/10.3390/ani10040745

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakabayashi K, Takahashi H, Ohama E, Ikuta F (1989) Tyrosine hydroxylase-immunoreactive intrinsic neurons in the Auerbach’s and Meissner’s plexuses of humans. Neurosci Lett 96:259–263

    Article  PubMed  CAS  Google Scholar 

  • Wallace KN, Akhter S, Smith EM, Lorent K, Pack M (2005) Intestinal growth and differentiation in zebrafish. Mech Dev 122:157–173

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Du J, Lam SH, Mathavan S, Matsudaira P, Gong Z (2010) Morphological and molecular evidence for functional organization along the rostrocaudal axis of the adult zebrafish intestine. BMC Genom 11:392. https://doi.org/10.1186/1471-2164-11-392

    Article  CAS  Google Scholar 

  • Wendler S, Hartmann N, Hoppe B, Englert C (2015) Age-dependent decline in fin regenerative capacity in the short-lived fish Nothobranchius furzeri. Aging Cell 14:857–866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson JM, Castro LFC (2010) Morphological diversity of the gastrointestinal tract in fishes. The multifunctional gut of fish. Fish Physiol 30:1–55

    Article  Google Scholar 

  • Yamamoto T (1966) An electron microscope study of the columnar epithelial cell in the intestine of fresh water teleosts: goldfish (Carassius auratus) and rainbow trout (Salmo irideus). Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie 72:66–87

    Article  PubMed  CAS  Google Scholar 

  • Ye L, Bae M, Cassilly CD, Jabba SV, Thorpe DW, Martin AM, Lu HY, Wang J, Thompson JD, Lickwar CR, Poss KD, Keating DJ, Jordt SE, Clardy J, Liddle RA, Rawls JF (2021) Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe 29(2):179–196. https://doi.org/10.1016/j.chom.2020.11.011

    Article  PubMed  CAS  Google Scholar 

  • Ye L, Mueller O, Bagwell J, Bagnat M, Liddle RA, Rawls JF (2019) High fat diet induces microbiota-dependent silencing of enteroendocrine cells. eLife 8:e48479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu Y, Yang W, Li Y, Cong Y (2020) Enteroendocrine cells: sensing gut microbiota and regulating inflammatory bowel diseases. Inflamm Bowel Dis 26:11–20

    Article  PubMed  Google Scholar 

  • Zhao X, Pack M (2017) Modeling intestinal disorders using zebrafish. Methods Cell Biol 138:241–270

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the support of the annual killifish facility of the Faculty of Medicine, University of Chile, jointly funded by the Institute of Biomedical Sciences, Center for Geroscience, Brain Health and Metabolism, and Biomedical Neuroscience Institute. We also thank Mercédes López and Fabiola Osorio for kindly providing the CD3 and CD4 antibodies, and Manuel Varas-Godoy for sharing EdU reagents.

Funding

This work was funded by the following projects of the Chilean National Agency for Research and Development (ANID): ICM P09-015F and ICN09_015, FONDAP 15150012, PIA/ ACT192015. DBM is supported by grant # 2021/06287-6, São Paulo Research Foundation (FAPESP). Also, we thank U.S. Air Force Office of Scientific Research FA9550-21-1-0096, Department of Defence grant W81XWH2110960, ANID/FONDEF ID1ID22I10120, and ANID/NAM22I0057 and Swiss Consolidation Grant -The Leading House for the Latin American Region (CH). ANID/FONDECYT1220573 (CH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel L. Concha.

Ethics declarations

Ethics approval

The animal study was reviewed and approved by Bioethics Committee of the Faculty of Medicine, University of Chile (CICUA certificate number: 20385-MED-UCH).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 709 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borgonovo, J., Allende-Castro, C., Medinas, D.B. et al. Immunohistochemical characterisation of the adult Nothobranchius furzeri intestine. Cell Tissue Res 395, 21–38 (2024). https://doi.org/10.1007/s00441-023-03845-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-023-03845-8

Keywords

Navigation