Skip to main content
Log in

Improved Sliding Mode Output Control of Mine Filling Slurry Concentration Based on Proportional-Integral Observer

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

The accuracy of slurry concentration is an important guarantee for the quality of mine filling, and enhancing the robustness of the control system is an effective way to improve the accuracy. Based on sliding mode control, this study proposes a novel robust control method for the slurry concentration. Combined mechanism analysis and system response, the controller design model of a slurry preparation process is set up. An improved exponential reaching law with adaptive gain is developed and applied to the design of system controller. Additionally, a proportional-integral observer is used to estimate the state and disturbance of the system, and the disturbance is compensated by the design of the control law. The results demonstrate that the proposed closed-loop system has strong robustness and only measurable output is required for the implementation of the control law. At the same time, the accuracy of slurry concentration is greatly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Hefni, M. and Hassani, F., Experimental development of a novel mine backfill material: Foam mine fill, Minerals, 2020, vol. 10, no. 6, p. 564. https://doi.org/10.3390/min10060564

    Article  Google Scholar 

  2. Lopes, C., Lisboa, V., Carvalho, J., Mateus, A., and Martins, L., Challenges to access and safeguard mineral resources for society: A case study of kaolin in Portugal, Land Use Policy, 2018, vol. 79, pp. 263–284. https://doi.org/10.1016/j.landusepol.2018.07.035

    Article  Google Scholar 

  3. Yang, Z., Zhai, S., Gao, Q., and Li, M., Stability analysis of large-scale stope using stage subsequent filling mining method in Sijiaying iron mine, J. Rock Mech. Geotechnical Eng., 2015, vol. 7, no. 1, pp. 87–94. https://doi.org/10.1016/j.jrmge.2014.11.003

    Article  Google Scholar 

  4. Liang, W., Zhao, G., and Hong, C., Selecting the optimal mining method with extended multi-objective optimization by ratio analysis plus the full multiplicative form (MULTIMOORA) approach, Neural Comput. Appl., 2019, vol. 31, no. 10, pp. 5871–5886. https://doi.org/10.1007/s00521-018-3405-5

    Article  Google Scholar 

  5. Wang, Ch.-L., Ren, Zh.-Zh., Huo, Z.-K., Zheng, Yo.-Ch., Tian, X.-P., Zhang, K.-F., and Zhao, G.-F., Properties and hydration characteristics of mine cemented paste backfill material containing secondary smelting water-granulated nickel slag, Alexandria Eng. J., 2021, vol. 60, no. 6, pp. 4961–4971. https://doi.org/10.1016/j.aej.2020.12.058

    Article  Google Scholar 

  6. Xu, J.-N., Zhao, Zh.-B., and Wang, F.-Q., Data driven control of underflow slurry concentration in deep cone thickener, 2017 6th Data Driven Control and Learning Systems (DDCLS), Chongqing, China, 2017, IEEE, 2017, pp. 26–27. https://doi.org/10.1109/ddcls.2017.8068156

  7. Hu, J., Zhang, H., Liu, H., and Yu, X., A survey on sliding mode control for networked control systems, Int. J. Syst. Sci., 2021, vol. 52, no. 6, pp. 1129–1147. https://doi.org/10.1080/00207721.2021.1885082

    Article  MathSciNet  MATH  Google Scholar 

  8. Ahmad, F.F., Ghenai, C., Hamid, A.K., and Bettayeb, M., Application of sliding mode control for maximum power point tracking of solar photovoltaic systems: A comprehensive review, Annu. Rev. Control, 2020, vol. 49, pp. 173–196. https://doi.org/10.1016/j.arcontrol.2020.04.011

    Article  MathSciNet  Google Scholar 

  9. Wang, J., Zhu, P., He, B., Deng, G., Zhang, C., and Huang, X., An adaptive neural sliding mode control with ESO for uncertain nonlinear systems, Int. J. Control, Autom. Syst., 2021, vol. 19, no. 2, pp. 687–697. https://doi.org/10.1007/s12555-019-0972-x

    Article  Google Scholar 

  10. Gao, W., Wang, Yu., and Homaifa, A., Discrete-time variable structure control systems, IEEE Trans. Ind. Electron., 1995, vol. 42, no. 2, pp. 117–122. https://doi.org/10.1109/41.370376

    Article  Google Scholar 

  11. Bartoszewicz, A. and Adamiak, K., Discrete-time sliding-mode control with a desired switching variable generator, IEEE Trans. Autom. Control, 2019, vol. 65, no. 4, pp. 1807–1814. https://doi.org/10.1109/tac.2019.2934393

    Article  MathSciNet  MATH  Google Scholar 

  12. Ma, H. and Li, Ya., A novel dead zone reaching law of discrete-time sliding mode control with disturbance compensation, IEEE Trans. Ind. Electron., 2019, vol. 67, no. 6, pp. 4815–4825. https://doi.org/10.1109/tie.2019.2924878

    Article  Google Scholar 

  13. Zhang, J., Zhang, N., Shen, G., and Xia, Yu., Analysis and design of chattering-free discrete-time sliding mode control, Int. J. Robust Nonlinear Control, 2019, vol. 29, no. 18, pp. 6572–6581. https://doi.org/10.1002/rnc.4748

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, Ya., Feng, Yu., Zhang, X., and Liang, J., A new reaching law for antidisturbance sliding-mode control of pmsm speed regulation system, IEEE Trans. Power Electron., 2019, vol. 35, no. 4, pp. 4117–4126. https://doi.org/10.1109/tpel.2019.2933613

    Article  Google Scholar 

  15. Utkin, V., Poznyak, A., Orlov, Yu., and Polyakov, A., Conventional and high order sliding mode control, J. Franklin Inst., 2020, vol. 357, no. 15, pp. 10244–10261. https://doi.org/10.1016/j.jfranklin.2020.06.018

    Article  MathSciNet  MATH  Google Scholar 

  16. Shi, X., Lan, Yi., Sun, Yu., and Lei, C., A new reaching law for sliding mode observer of controllable excitation linear synchronous motor, Trans. Inst. Meas. Control, 2022, vol. 44, no. 2, pp. 263–271. https://doi.org/10.1177/01423312211032070

    Article  Google Scholar 

  17. Zhang, Ya., Yin, Z., Zhang, Ya., Liu, J., and Tong, X., A novel sliding mode observer with optimized constant rate reaching law for sensorless control of induction motor, IEEE Trans. Ind. Electron., 2019, vol. 67, no. 7, pp. 5867–5878. https://doi.org/10.1109/tie.2019.2942577

    Article  Google Scholar 

  18. Kali, Ya., Saad, M., Doval-gandoy, J., Rodas, J., and Benjelloun, K., Discrete sliding mode control based on exponential reaching law and time delay estimation for an asymmetrical six-phase induction machine drive, IET Electr. Power Appl., 2019, vol. 13, no. 11, pp. 1660–1671. https://doi.org/10.1049/iet-epa.2019.0058

    Article  Google Scholar 

  19. Chang, J.L., Applying discrete-time proportional integral observers for state and disturbance estimations, IEEE Trans. Autom. Control, 2006, vol. 51, no. 5, pp. 814–818. https://doi.org/10.1109/TAC.2006.875019

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Z., Liu, X., and Wang, W., Pole placement method on a class of nonlinear systems with adaptive backstepping technique, Int. J. Syst. Sci., 2022, vol. 53, no. 3, pp. 613–633. https://doi.org/10.1080/00207721.2021.1966548

    Article  MathSciNet  MATH  Google Scholar 

  21. Bartoszewicz, A. and Adamiak, K., Discrete-time sliding-mode control with a desired switching variable generator, IEEE Trans. Autom. Control, 2019, vol. 65, no. 4, pp. 1807–1814. https://doi.org/10.1109/tac.2019.2934393

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China, grant no. 62063018; the Science and Technology Program of Gansu Province, grant nos. 22JR5RA225 and 21JR7RA204; the Gansu University Industrial Support and Guidance Project, grant no. 2019C-05; the Gansu Industrial Process Advanced Control Key Laboratory Open Fund Project, grant no. 2019KFJJ06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqiang Tang.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiqiang Tang, Lu, C., Xu, T. et al. Improved Sliding Mode Output Control of Mine Filling Slurry Concentration Based on Proportional-Integral Observer. Aut. Control Comp. Sci. 57, 552–562 (2023). https://doi.org/10.3103/S014641162306010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S014641162306010X

Keywords:

Navigation