Skip to main content
Log in

Preadaptivity of Noncontractile Thermogenesis in the Evolution of Warm-Bloodedness in Vertebrates

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Most of the heat that is released in the vertebrate body is produced in the muscles during contractile (during movement or trembling) and noncontractile (without muscle activity) thermogenesis. Contractile thermogenesis is characteristic of all vertebrates, but it is not able to maintain a constantly high body temperature in animals. The main idea discussed in this article and based on a large number of publications of recent years is as follows: the main biochemical basis of warm-bloodedness in vertebrates is part of the cycle of contraction–relaxation of striated skeletal muscles, in which the act of muscle contraction somehow falls out, and the energy that should have been used for it is dissipated in the form of heat. This noncontractile thermogenesis, which is able to support the regional and general endothermy in vertebrates, can be considered the real biochemical basis of warm-bloodedness. Thus, the presence of skeletal muscles in all vertebrates and the common biochemical foundations of the contraction–relaxation cycle represent a single preadaptive property of the manifestation of noncontractile thermogenesis in all vertebrates, starting with fish, which is a basis for the evolution of warm-bloodedness. Therefore, the modern data that the first terrestrial vertebrates were most likely animals with high levels of both metabolism and body temperature are quite understandable and not surprising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

REFERENCES

  1. Anderson, K., Multi-omic analysis of hibernator skeletal muscle and calcium handling regulation, Master Sci. (Biol.) Thesis, Minnesota: Univ. of Minnesota, 2016.

  2. Arruda, A.P., Ketzer, L.A., Nigro, M., et al., Cold tolerance in hypothyroid rabbits: Role of skeletal muscle mitochondria and sarcoplasmic reticulum Ca2+ ATPase isoform 1 heat production, Endocrinology, 2008, vol. 149, pp. 6262–6271.

    Article  CAS  PubMed  Google Scholar 

  3. Augee, M.L., Monotremes and the evolution of homeothermy, in Monotreme Biology, Augee, M.L., Ed., Sydney: R. Zool. Soc. N.S.W, 1978, pp. 111–120.

  4. Augee, M.L., Gooden, B., and Musser, A., Echidna: Extraordinary Egg-Laying Mammal, Clayton: CSIRO Publ., 2006.

    Book  Google Scholar 

  5. Bal, N.C., Maurya, S.K., Sopariwala, D.H., et al., Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals, Nat. Med., 2012, vol. 18, pp. 1575–1579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bal, N.C., Maurya, S.K., Singh, S., et al., Increased reliance on muscle-based thermogenesis upon acute minimization of brown adipose tissue function, J. Biol. Chem., 2016, vol. 291, pp. 17247–17257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bal, N.C., Maurya, S.K., Pani, S., et al., Mild cold induced thermogenesis: Are BAT and skeletal muscle synergistic partners?, Biosci. Rep., 2017, vol. 37, p. BSR20171087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bal, N.C., Sahoo, S.K., Maurya, S.K., and Periasamy, M., The role of sarcolipin in muscle nonshivering thermogenesis, Front. Physiol., 2018, vol. 9, p. 1217. https://doi.org/10.3389/fphys.2018.01217

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bal, N.C., Gupta, S.C., Pan, M., et al., Is upregulation of sarcolipin beneficial or detrimental to muscle function?, Front. Physiol., 2021, vol. 12, p. 633058.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Barré, H. and Nedergaard, J., Cold-induced changes in Ca2+ transport in duckling skeletalmuscle mitochondria, Am. J. Physiol., 1987, vol. 252, pp. R1046–R1054.

    PubMed  Google Scholar 

  11. Barré, H., Duchamp, C., Rouanet, J.-L., et al., Muscular nonshivering thermogenesis in cold-acclimated ducklings, in Physiology of Cold Adaptation in Birds, Bech, C. and Reinertsen, R.E., Eds., New York: Plenum, 1989, pp. 49–58.

    Google Scholar 

  12. Bartholomew, G.A., Physiological control of body temperature, in Biology of the Reptilia, Gans, C. and Pough, F.H., Eds., New York: Acad. Press, 1982, vol. 12, pp. 167–211.

    Google Scholar 

  13. Benedict, F.G., The Physiology of Large Reptiles with Special Reference to the Heat Production of Snakes, Tortoises, Lizards and Alligators, Washington, DC: Carnegie Inst., 1932.

    Google Scholar 

  14. Bernal, D., Donley, J.M., Shadwick, R.E., and Syme, D.A., Mammal-like muscles power swimming in a cold-water shark, Nature, 2005, vol. 437, pp. 1349–1352.

    Article  CAS  PubMed  Google Scholar 

  15. Bicudo, J.E., Vianna, C.R., and Chaui-Berlinck, J.G., Thermogenesis in birds, Biosci. Rep., 2001, vol. 21, pp. 181–188.

    Article  CAS  PubMed  Google Scholar 

  16. Bicudo, J.E., Bianco, A.C., and Vianna, C.R., Adaptive thermogenesis in hummingbirds, J. Exp. Biol., 2002, vol. 205, pp. 2267–2273.

    Article  PubMed  Google Scholar 

  17. Blank, J.M., Morrissette, J.M., Farwell, C.J., et al., Temperature effects on metabolic rate of juvenile pacific bluefin tuna thunnus orientalis, J. Exp. Biol., 2007, vol. 210, pp. 4254–4261.

    Article  PubMed  Google Scholar 

  18. Blix, A.S., Adaptations to polar life in mammals and birds, J. Exp. Biol., 2016, vol. 219, pp. 1093–1105.

    Article  PubMed  Google Scholar 

  19. Block, B.A., Thermogenesis in muscle, Annu. Rev. Physiol., 1994, vol. 56, pp. 535–577.

    Article  CAS  PubMed  Google Scholar 

  20. Bostrom, B.L., Jones, T.T., Hastings, M., and Jones, D.R., Behaviour and physiology: The thermal strategy of leatherback turtles, PLoS One, 2010, vol. 5, p. e13925.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brattstrom, B.H. and Collins, R., Thermoregulation, International Turtle and Tortoise Society Journal, 1972, vol. 16, no. 5, pp. 15–19.

    Google Scholar 

  22. Brigham, R.M. and Trayhurn, P., Brown fat in birds? A test for the mammalian BAT-specific mitochondrial uncoupling protein in Common Poorwills, Condor, 1994, vol. 96, pp. 208–211.

    Article  Google Scholar 

  23. Bruton, J.D., Aydin, J., Yamada, T., et al., Increased fatigue resistance linked to Ca2+-stimulated mitochondrial biogenesis in muscle fibres of cold-acclimated mice, J. Physiol., 2010, vol. 588, pp. 4275–4288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bundle, M.W., Hansen, K.S., and Dial, K.P., Does the metabolic rate-flight speed relationship vary among geometrically similar birds of different mass?, J. Exp. Physiol., 2007, vol. 210, pp. 1075–1083.

    Google Scholar 

  25. Burness, G., Diamond, J., and Flannery, T., Dinosaurs, dragons, and dwarfs: The evolution of maximal body size, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 14518–14523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cannon, B. and Nedergaard, J., Brown adipose tissue: Function and physiological significance, Physiol. Rev., 2004, vol. 84, pp. 277–359.

    Article  CAS  PubMed  Google Scholar 

  27. Cannon, B., Golozoubova, V., Matthias, A., et al., Is there life in the cold without UCP1?, in Life in the Cold, 11th Int. Hibernat. Symp. (Jungholz, August 13–18, 2000), Heldmaier, G. and Klingenspor, M., Eds., Berlin: Springer, 2000, pp. 387–400.

  28. Carey, F.G. and Teal, J.M., Heat conservation in tuna fish muscle, Proc. Natl. Acad. Sci. USA, 1966, vol. 56, pp. 1464–1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carey, F.G. and Teal, J.M., Mako and porbeagle: Warm-bodied sharks, Compendium of Biochemical Physiology, 1969, vol. 28, pp. 199–204.

    Article  CAS  Google Scholar 

  30. Chaffee, R.R. and Roberts, J.C., Temperature acclimation in birds and mammals, Annu. Rev. Physiol., 1971, vol. 33, pp. 155–202.

    Article  CAS  PubMed  Google Scholar 

  31. Cheah, K.S., Dauncey, M.J., Cheah, A.M., and Ingram, D.L., Influence of environmental temperature and energy intake on porcine skeletal muscle mitochondria, Comp. Biochem. Physiol., 1985, vol. 82, pp. 287–292.

    CAS  Google Scholar 

  32. Cherlin, V.A., Evolution of thermobiological status in vertebrate animals. 1. Body temperatures of the extinct and recent reptiles, Zh. Obshch. Biol., 2021c, vol. 82, no. 6, pp. 445–458.

    Google Scholar 

  33. Cherlin, V.A., Evolution of thermobiological status in vertebrate animals. 2. Development of the relationship with temperature in vertebrate animals, Zh. Obshch. Biol., 2021d, vol. 82, no. 6, pp. 459–477.

    Google Scholar 

  34. Cherlin, V.A., The hypothesis on mechanisms of the evolutionary process and its canalizationon the example of vertebrate animals. Part 1. Evolution relatedto high body temperature, Usp. Sovrem. Biol., 2021a, vol. 141, no. 1, pp. 78–104.

    Google Scholar 

  35. Cherlin, V.A., The hypothesis on mechanisms of the evolutionary processand its canalization on the example of vertebrate animals. Part 2. Some mechanisms of the evolutionary process in vertebrates, Usp. Sovrem. Biol., 2021b, vol. 141, no. 2, pp. 189–208.

    Google Scholar 

  36. Chetanov, N.A., Litvinov, N.A., and Yugov, M.V., Effect of temperature on the metabolic rate in two species phrynocephalus, Izvestiya Samarskogo Nauchnogo Tsentra Ross. Akad. Nauk, 2014, vol. 16, no. 5 (1), pp. 445–447.

  37. Ciezarek, A.G., Osborne, O.G., Shipley, O.N., et al., Phylotranscriptomic insights into the diversification of endothermic Thunnus tunas, Mol. Biol. Evol., 2019, vol. 36, pp. 84–96.

    Article  CAS  PubMed  Google Scholar 

  38. Cloudsley-Thompson, J.L., Physiological thermoregulation in the spurred tortoise (Testudo graeca), J. Nat. Hist., 1974, vol. 8, no. 5, pp. 577–587.

    Article  Google Scholar 

  39. Crawshaw, L.I., Moffitt, B.P., Lemons, D.E., and Downey, J.A., The evolutionary development of vertebrate thermoregulation, Am. Sci., 1981, vol. 69, no. 5, pp. 543–550.

    CAS  PubMed  Google Scholar 

  40. Da Costa, D.C. and Landeira-Fernandez, A.M., Thermogenic activity of the Ca2+-ATPase from blue marlin heater organ: Regulation by KCl and temperature, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, vol. 297, pp. R1460–R1468.

    Article  PubMed  Google Scholar 

  41. Davenport, J., Fraher, J., Fitzgerald, E., et al., Fat head: An analysis of head and neck insulation in the leatherback turtle (Dermochelys coriacea), J. Exp. Biol., 2009, vol. 212, pp. 2753–2759.

    Article  PubMed  Google Scholar 

  42. Davenport, J., Jones, T.T., Work, T.M., and Balazs, G.H., Topsy-turvy: Turning the counter-current heat exchange of leatherback turtles upside down, Biol. Lett., 2015, vol. 11, p. e20150592.

    Article  Google Scholar 

  43. Davesne, D., Gueriau, P., Dutheil, D.B., and Bertrand, L., Exceptional preservation of a Cretaceous intestine provides a glimpse of the early ecological diversity of spiny-rayed fishes (Acanthomorpha, Teleostei), Sci. Rep., 2018, vol. 8, p. 8509.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dawson, T.J., Responses to cold of monotremes and marsupials, in Animal Adaptation to Cold. Advances in Comparative and Environmental Physiology, Wang, L.C.H., Brooks, R.J., and Boulant, J.A., Eds., Berlin, Heidelberg: Springer, 1989, vol. 4, pp. 255–288.

    Google Scholar 

  45. Dawson, W.R. and Templeton, J.R., Physiological responses to temperature in the alligator lizard, Gerrhonotus multicarinatus, Ecology, 1966, vol. 47, pp. 759–765.

    Article  Google Scholar 

  46. Dawson, W.R. and Carey, C., Seasonal acclimatization to temperature in cardueline finches, J. Comp. Physiol., 1976, vol. 112, no. 3, pp. 317–333.

    Article  Google Scholar 

  47. De Andrade, D.V., Temperature effects on the metabolism of amphibians and reptiles: Caveats and recommendations, in Amphibian and Reptile Adaptations to the Environment: Interplay Between Physiology and Behavior, Andrade, D.V., Bevier, C.R., and Carvalho, J.E., Eds., San Diego: CRC Press, 2016, pp. 129–154.

    Google Scholar 

  48. De Andrade, D.V., Brito, S.P., Toledo, L.F., and Abe, A.S., Seasonal changes in blood oxygen transport and acid-base status in the tegu lizard, Tupinambis merianae, Respir. Physiol. Neurobiol., 2004, vol. 140, pp. 197–208.

    Article  Google Scholar 

  49. De Bruijn, R. and Romero, L.M., Behavioral and physiological responses of wild-caught European starlings (Sturnus vulgaris) to a minor, rapid change in ambient temperature, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2011, vol. 160, pp. 260–266.

    Article  CAS  Google Scholar 

  50. Duchamp, C. and Barré, H., Skeletal muscle as the major site of nonshivering thermogenesis in cold-acclimated ducklings, Am. J. Physiol., 1993, vol. 265, pp. R1076–R1083.

    CAS  PubMed  Google Scholar 

  51. Duchamp, C., Barré, H., Rouanet, J.L., et al., Nonshivering thermogenesis in king penguin chicks. I. Role of skeletal muscle, Am. J. Physiol., 1991, vol. 261, pp. R1438–R1445.

    CAS  PubMed  Google Scholar 

  52. Dumonteil, E., Barré, H., and Meissner, G., Sarcoplasmic reticulum Ca(2+)-ATPase and ryanodine receptor in cold-acclimated ducklings and thermogenesis, Am. J. Physiol., 1993, vol. 265, pp. C507–C513.

    Article  CAS  PubMed  Google Scholar 

  53. Dumonteil, E., Barré, H., and Meissner, G., Expression of sarcoplasmic reticulum Ca2+ transport proteins in cold-acclimating ducklings, Am. J. Physiol., 1995, vol. 269, pp. C955–C960.

    Article  CAS  PubMed  Google Scholar 

  54. Dunlap, D.G., Influence of temperature and duration of acclimation, time of day, sex and body weight on metabolic rates in the hylid frog, Acris crepitans, Comp. Biochem. Physiol., 1969, vol. 31, pp. 555–570.

    Article  CAS  PubMed  Google Scholar 

  55. Dutton, R.H. and Fitzpatrick, L.C., Metabolic compensation to metabolic temperatures in the rusty lizard, Sceloporus olivaceus, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1975, vol. 51, pp. 309–318.

    CAS  Google Scholar 

  56. Eldershaw, T.P.D., Ye, J., Clarke, M.J., and Colquhoun, E.Q., Vasoconstrictor-induced thermogenic switching in ectotherm and endotherm muscle, in Adaptations to the Cold, 10th Int. Hibernat. Symp. (Tasmania, 30 June–6 July, 1996), Geiser, F., Hulbert, A.J., and Nicol, S.C., Eds., Armidale: Univ. N. Eng. Press, 1996, pp. 311–317.

  57. Emre, Y., Hurtaud, C., Ricquier, D., et al., Avian UCP: The killjoy in the evolution of the mitochondrial uncoupling proteins, J. Mol. Evol., 2007, vol. 65, pp. 392–402.

    Article  CAS  PubMed  Google Scholar 

  58. Engbretson, G.A. and Livezey, R.L., The effects of aggressive display on body temperature in the fence lizard Sceleporus occidentalis occidentalis Baird and Girard, Physiol. Biochem. Zool., 1972, vol. 45, pp. 247–254.

    Google Scholar 

  59. Estefa, J., Klembara, J., Tafforeau, P., and Sanchez, S., Limb-bone development of seymouriamorphs: Implications for the evolution of growth strategy in stem amniotes, Front. Earth Sci., 2020, vol. 8, pp. 1–21.

    Article  Google Scholar 

  60. Fair, W., Ackman, R.G., and Mrosovsky, N., Body temperature of Dermochelys coriacea: Warm turtle from cold water, Science, 1972, vol. 177, pp. 791–793.

    Article  Google Scholar 

  61. Filali-Zegzouti, Y., Abdelmelek, H., Rouanet, J.L., et al., Role of catecholamines in glucagon-induced thermogenesis, J. Neural Transm., 2005, vol. 112, pp. 481–489.

    Article  CAS  PubMed  Google Scholar 

  62. Franck, J.P.C., Slight-Simcoe, E., and Wegner, N.C., Endothermy in the smalleye opah (lampris incognitus): A potential role for the uncoupling protein sarcolipin, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2019, vol. 233, pp. 48–52.

    Article  CAS  Google Scholar 

  63. Fyda, T.J., Spencer, C., Jastroch, M., and Gaudry, M., Disruption of thermogenic UCP1 predated the divergence of pigs and peccaries, J. Exp. Biol., 2020, vol. 223, p. jeb223974. https://doi.org/10.1242/jeb.223974

    Article  PubMed  Google Scholar 

  64. Galvao, P.E., Tarasantchi, J., and Guertzenstein, P., Heat production of tropical snakes, Am. J. Physiol., 1965, vol. 209, pp. 501–506.

    Article  CAS  PubMed  Google Scholar 

  65. Gaudry, M.J., Jastroch, M., Treberg, J.R., et al., Inactivation of thermogenic UCP1 as a historical contingency in multiple placental mammal clades, Sci. Adv., 2017, vol. 3, p. e1602878.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gaudry, M.J., Campbell, K.L., and Jastroch, M., Evolution of UCP1, in Brown Adipose Tissue, Pfeifer, A., Kingenspor, M., and Herzig, S., Eds., Cham: Springer, 2018, pp. 127–141.

    Google Scholar 

  67. Geiser, F., Daily torpor and thermoregulation in Antechinus (Marsupialia): Influence of body mass, season, development, reproduction, and sex, Oecologia, 1988, vol. 77, pp. 395–399.

    Article  PubMed  Google Scholar 

  68. Geiser, F. and Körtner, G., Hibernation and daily torpor in Australian mammals, Austr. Zool., 2010, vol. 35, pp. 204–215.

    Article  Google Scholar 

  69. Grav, H.J., Borch-Iohnsen, B., Dahl, H.A., et al., Oxidative capacity of tissues contributing to thermogenesis in eider (Somateria mollissima) ducklings: Changes associated with hatching, J. Comp. Physiol., B, 1988, vol. 158, pp. 513–518.

    Article  CAS  PubMed  Google Scholar 

  70. Greenway, D.C. and Himms-Hagen, J., Increased calcium uptake by muscle mitochondria of cold-acclimated rats, Am. J. Physiol., 1978, vol. 234, pp. C7–C13.

    Article  CAS  PubMed  Google Scholar 

  71. Greer, A.E., Lazell, J.D., and Wright, R.M., Anatomical evidence for a counter-current heat exchanger in the leatherback turtle (Dermochelys coriacea), Nature, 1973, vol. 244, p. 181.

    Article  Google Scholar 

  72. Grigg, G.C., An evolutionary framework for studies of hibernation and shortterm torpor, in Life in the Cold, 12th Int. Hibernat. Symp. (Vancouver, 25 July–1 August, 2004), Barnes, B.M., Carey, H.V., Eds., Fairbanks: Inst. Arctic Biol., Univ. Alaska, 2004, pp. 131–141.

  73. Grigg, G.C. and Beard, L., Hibernation by echidnas in mild climates: Hints about the evolution of endothermy?, in Life in the Cold, 11th Int. Hibernat. Symp. (Jungholz, August 13–18, 2000), Heldmaier, G. and Klingenspor, M., Eds., Berlin: Springer, 2000, pp. 5–20.

  74. Grigg, G.C., Beard, L.A., and Augee, M.L., Hibernation in a monotreme, the echidna (Tachyglossus aculeatus), Comp. Biochem. Physiol., Part A: Physiol., 1989, vol. 92, pp. 609–612.

    Article  CAS  Google Scholar 

  75. Grigg, G.C., Augee, M., and Beard, L., Thermal relations of free-living echidnas during activity and in hibernation in a cold climate, in Platypus and Echidnas, Augee, M.L., Ed., Mosman: R. Zool. Soc. N.S.W., 1992, pp. 160–173.

  76. Grigg, G.C., Beard, L.A., and Augee, M.L., The evolution of endothermy and its diversity in mammals and birds, Physiol. Biochem. Zool., 2004, vol. 77, pp. 982–997.

    Article  PubMed  Google Scholar 

  77. Grigg, G., Nowack, J., Bicudo, J.E.P.W., et al., Whole-body endothermy: Ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians, Biol. Rev. Cambridge Philos. Soc., 2022, vol. 97, pp. 766–801.

    Article  CAS  PubMed  Google Scholar 

  78. Guglielmo, C.G., Move that fatty acid: Fuel selection and transport in migratory birds and bats, Integr. Comp. Biol., 2010, vol. 50, pp. 336–345.

    Article  PubMed  Google Scholar 

  79. Haman, F. and Blondin, D.P., Shivering thermogenesis in humans: Origin, contribution and metabolic requirement, Temperature, 2017, vol. 4, pp. 217–226.

    Article  Google Scholar 

  80. Harlow, P. and Grigg, G., Shivering thermogenesis the production of heat, especially within the animal body thermogenesis in brooding diamond python, Python spilotes spilotes, Copeia, 1984, vol. 4, pp. 959–965.

    Article  Google Scholar 

  81. Hashimoto, Y., Nishimura, T., Kurobe, Y., et al., Effect of 3',5'-dimethylpyrazole on colonic temperature, plasma glucose, nefa and corticosterone in the non-acclimated rats subjected to cold, Jpn. J. Pharm., 1970, vol. 20, pp. 441–442.

    Article  CAS  Google Scholar 

  82. Hayward, J.S. and Lisson, P.A., Evolution of brown fat: Its absence in marsupials and monotremes, Can. J. Zool., 1992, vol. 70, pp. 171–179.

    Article  Google Scholar 

  83. Hirabayashi, M., Ijiri, D., Kamei, Y., et al., Transformation of skeletal muscle from fast- to slow-twitch during acquisition of cold tolerance in the chick, Endocrinology, 2005, vol. 146, pp. 399–405.

    Article  CAS  PubMed  Google Scholar 

  84. Holloway, J.C. and Geiser, F., Seasonal changes in the thermoenergetics of the marsupial sugar glider, petaurus breviceps, J. Comp. Physiol., B, 2001, vol. 171, pp. 643–650.

    Article  CAS  PubMed  Google Scholar 

  85. Hudson, D.M. and Bernstein, M.H., Gas exchange and energy cost of flight in the white-necked raven, Corvus cryptoleucus, J. Exp. Biol., 1983, vol. 103, pp. 121–130.

    Article  CAS  PubMed  Google Scholar 

  86. Hudson, J.W. and Bertram, F.W., Physiological responses to temperature in the ground skink, Lygosoma laterale, Physiol. Zool., 1966, vol. 39, pp. 21–29.

    Article  Google Scholar 

  87. Huey, R.B., Temperature, physiology and the ecology of reptiles, in Biology of the Reptilia, Gans, C., Ed., London: Acad. Press, 1982, vol. 12, pp. 25–92.

    Google Scholar 

  88. Huey, R.B. and Slatkin, M., Cost and benefits of lizard thermoregulation, Q. Rev. Biol., 1976, vol. 51, pp. 363–384.

    Article  CAS  PubMed  Google Scholar 

  89. Hutchison, V.H., Dowling, H.D., and Vinegar, A., Thermoregulation in a brooding female indian python, Python molurus bivittatus, Science, 1966, vol. 151, pp. 694–696.

    Article  CAS  PubMed  Google Scholar 

  90. Ijiri, D., Miura, M., Kanai, Y., and Hirabayashi, M., Increased mass of slow-type skeletal muscles and depressed myostatin gene expression in cold-tolerant chicks, Zool. Sci., 2009, vol. 26, pp. 277–283.

    Article  CAS  Google Scholar 

  91. Jastroch, M., Withers, K.W., Stoehr, S., and Klingenspor, M., Mitochondrial proton conductance in skeletal muscle of a cold-exposed marsupial, Antechinus flavipes, is unlikely to be involved in adaptive nonshivering thermogenesis but displays increased sensitivity toward carbon-centered radicals, Physiol. Biochem. Zool., 2009, vol. 82, pp. 447–454.

    Article  CAS  PubMed  Google Scholar 

  92. Jastroch, M., Oelkrug, R., and Keipert, S., Insights into brown adipose tissue evolution and function from non-model organisms, J. Exp. Biol., 2018, vol. 221, p. jeb169425.

    Article  PubMed  Google Scholar 

  93. Jenni, L. and Jenni-Eiermann, S., Fuel supply and metabolic constraints in migrating birds, J. Avian Biol., 1998, vol. 29, pp. 521–528.

    Article  Google Scholar 

  94. Johnson, C.R., Thermoregulation in crocodilians. I. Headbody temperature control in the papuan-new guinean crocodiles, Crocodilus novoaguineae and Crocodilus porosus, Comp. Biochem. Physiol., Part A: Physiol., 1974, vol. 49, no. 1, pp. 3–28.

    Article  CAS  Google Scholar 

  95. Johnston, D.W., The absence of brown adipose tissue in birds, Comp. Biochem. Physiol., Part A: Physiol., 1971, vol. 40, pp. 1107–1108.

    Article  CAS  Google Scholar 

  96. Kabat, A.P., Rose, R.W., Harris, J., and West, A.K., Molecular identification of uncoupling proteins (UCP2 and UCP3) and absence of UCP1 in the marsupial tasmanian bettong, Bettongia gaimardi, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2003a, vol. 134, pp. 71–77.

    Google Scholar 

  97. Kabat, A.P., Rose, R.W., and West, A.K., Nonshivering thermogenesis in a carnivorous marsupial, Sarcophilus harrisii, in the absence of UCP1, J. Therm. Biol., 2003b, vol. 28, pp. 413–420.

    Article  CAS  Google Scholar 

  98. Kaspari, R.R., Reyna-Neyra, A., Jung, L., et al., The paradoxical lean phenotype of hypothyroid mice is marked by increased adaptive thermogenesis in the skeletal muscle, Proc. Natl. Acad. Sci. USA, 2020, vol. 117, pp. 22545–22551.

    Article  Google Scholar 

  99. Klingenberg, M., The ADP and ATP transport in mitochondria and its carrier, Biochim. Biophys. Acta, 2008, vol. 1778, pp. 1978–2021.

    Article  CAS  PubMed  Google Scholar 

  100. Kohler, M., Marin-Moratalla, N., Jordana, X., and Aanes, R., Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology, Nature, 2012, vol. 487, pp. 358–361.

    Article  PubMed  Google Scholar 

  101. Kunji, E.R., Aleksandrova, A., King, M.S., et al., The transport mechanism of the mitochondrial ADP/ATP carrier, Biochim. Biophys. Acta, 2016, vol. 1863, pp. 2379–2393.

    Article  CAS  PubMed  Google Scholar 

  102. Lamarre-Picquot, P., Troisieme memoirs sur l’incubation et quatre phenomenes observes ches les ophidiens, Paris: Comp. Rend., Acad. Sci., 1842, vol. 14, p. 164.

    Google Scholar 

  103. Legendre, L.J. and Davesne, D., The evolution of mechanisms involved in vertebrate endothermy, Philos. Trans. R. Soc. London, Ser. B, 2020, vol. 375, no. 1793, p. e20190136.

  104. Marmonier, F., Duchamp, C., Cohen-Adad, F., et al., Hormonal control of thermogenesis in perfused muscle of muscovy ducklings, Am. J. Physiol., 1997, vol. 273, pp. R1638–R1648.

    CAS  PubMed  Google Scholar 

  105. Matoba, H. and Murakami, N., Histochemical changes of rat skeletal muscles induced by cold acclimation, Jpn. J. Physiol., 1981, vol. 31, pp. 273–278.

    Article  CAS  PubMed  Google Scholar 

  106. Maurya, S.K., Herrera, J.L., Sahoo, S.K., et al., Sarcolipin signaling promotes mitochondrial biogenesis and oxidative metabolism in skeletal muscle, Cell Rep., 2018, vol. 24, pp. 2919–2931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mollica, M.P., Lionetti, L., Crescenzo, R., et al., Cold exposure differently influences mitochondrial energy efficiency in rat liver and skeletal muscle, FEBS Lett., 2005, vol. 579, pp. 1978–1982.

    Article  CAS  PubMed  Google Scholar 

  108. Montigny, C., Decottignies, P., Le Marechal, P., et al., S‑palmitoylation and s-oleoylation of rabbit and pig sarcolipin, J. Biol. Chem., 2014, vol. 289, pp. 33850–33861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Morrissette, J.M., Franck, J.P., and Block, B.A., Characterization of ryanodine receptor and Ca2+-ATPase isoforms in the thermogenic heater organ of blue marlin (Makaira nigricans), J. Exp. Biol., 2003, vol. 206, pp. 805–812.

    Article  CAS  PubMed  Google Scholar 

  110. Nedergaard, J. and Cannon, B., Brown adipose tissue as a heat-producing thermoeffector, Handb. Clin. Neurol., 2018, vol. 156, pp. 137–152.

    Article  PubMed  Google Scholar 

  111. Nicol, S.C., Energy homeostasis in monotremes, Front. Neurosci., 2017, vol. 11, p. 195.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Nicol, S.C. and Andersen, N.A., Rewarming rates and thermogenesis in hibernating echidnas, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2008, vol. 150, pp. 189–195.

    Article  Google Scholar 

  113. Nicolaisen, T.S., Klein, A.B., Dmytriyeva, O., et al., Thyroid hormone receptor α in skeletal muscle is essential for T3-mediated increase in energy expenditure, FASEB J., 2020, vol. 34, pp. 15480–15491.

    Article  CAS  PubMed  Google Scholar 

  114. Nowack, J., Giroud, S., Arnold, W., and Ruf, T., Muscle nonshivering thermogenesis and its role in the evolution of endothermy, Front. Physiol., 2017, vol. 8, p. 889.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Nowack, J., Vetter, S.G., Stalder, G., et al., Muscle nonshivering thermogenesis in a feral mammal, Sci. Rep., 2019, vol. 9, p. 6378.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Oliver, S.R., Anderson, K.J., Hunstiger, M.M., and Andrews, M.T., Turning down the heat: Down-regulation of sarcolipin in a hibernating mammal, Neurosci. Lett., 2019, vol. 696, pp. 13–19.

    Article  CAS  PubMed  Google Scholar 

  117. Orlov, N.L., Facultative endogenous thermoregulation of pythons (Boidae, Pythoninae) and correlation between endothermic responses and behavioral thermoregulation, Zool. Zh., 1986, vol. 65, pp. 551–559.

    Google Scholar 

  118. Paladino, F.V., O’Connor, M.P., and Spotila, J.R., Metabolism of leatherback turtles, gigantothermy and thermoregulation of dinosaurs, Nature, 1990, vol. 344, pp. 858–860.

    Article  Google Scholar 

  119. Pant, M., Bal, N.C., and Periasamy, M., Sarcolipin: A key thermogenic and metabolic regulator in skeletal muscle, Trends Endocrinol. Metab., 2016, vol. 27, pp. 881–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pearson, O.P. and Bradford, D.F., Thermoregulation of lizards and toad at high altitudes in Peru, Copeia, 1976, no. 1, pp. 155–170.

  121. Polymeropoulos, E.T., Jastroch, M., and Frappell, P.B., Absence of adaptive nonshivering thermogenesis in a marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata), J. Comp. Physiol., 2012, vol. 182, pp. 393–401.

    Article  CAS  Google Scholar 

  122. Prosser, L., Comparative Animal Phisiology, Philadelphia: Saunders Co, 1973, 3rd ed., vol. 1.

    Google Scholar 

  123. Puigserver, P., Wu, Z., Park, C.W., et al., A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis, Cell, 1998, vol. 92, pp. 829–839.

    Article  CAS  PubMed  Google Scholar 

  124. Raimbault, S., Dridi, S., Denjean, F., et al., An uncoupling protein homologue putatively involved in facultative muscle thermogenesis in birds, Biochem. J., 2001, vol. 353, pp. 441–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rey, B., Roussel, D., Romestaing, C., et al., Upregulation of avian uncoupling protein in cold-acclimated and hyperthyroid ducklings prevents reactive oxygen species production by skeletal muscle mitochondria, BMC Physiol., 2010, vol. 10, p. 5.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Romer, A.S. and Parsons, T.S., The Vertebrate Body, Philadelphia: Saunders Co, 1977.

    Google Scholar 

  127. Rose, R.W. and Kuswanti, N., Thyroid function and the development of endothermy in a marsupial, the Tasmanian bettong, Bettongia gaimardi (Demarest 1822), Gen. Comp. Endocrinol., 2004, vol. 136, pp. 17–22.

    Article  CAS  PubMed  Google Scholar 

  128. Rose, R.W., West, A.K., Ye, J.M., et al., Nonshivering thermogenesis in a marsupial (the Tasmanian bettong, Bettongia gaimardi) is not attributable to brown adipose tissue, Physiol. Biochem. Zool., 1999, vol. 72, pp. 699–704.

    Article  CAS  PubMed  Google Scholar 

  129. Rothwell, N.J. and Stock, M.J., Biological distribution and significance of brown adipose tissue, Comp. Biochem. Physiol., Part A: Physiol., 1985, vol. 82, pp. 745–751.

    Article  CAS  Google Scholar 

  130. Rotter, D., Peiris, H., Grinsfelder, D.B., et al., Regulator of calcineurin 1 helps coordinate whole-body metabolism and thermogenesis, EMBO Rep., 2018, vol. 19, p. e44706.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Roussel, D., Chainer, F., Rouanet, J.L., and Barré, H., Increase in the adenine nucleotide translocase content of duckling subsarcolemmal mitochondria during cold acclimation, FEBS Lett., 2000, vol. 477, pp. 141–144.

    Article  CAS  PubMed  Google Scholar 

  132. Rowland, L.A., Bal, N.C., Kozak, L.P., and Periasamy, M., Uncoupling protein 1 and sarcolipin are required to maintain optimal thermogenesis, and loss of both systems compromises survival of mice under cold stress, J. Biol. Chem., 2015a, vol. 290, pp. 12282–12289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rowland, L.A., Bal, N.C., and Periasamy, M., The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy, Biol. Rev. Cambridge Philos. Soc., 2015b, vol. 90, pp. 1279–1297.

    Article  PubMed  Google Scholar 

  134. Rowlatt, U., Mrosovsky, N., and English, A., A comparative survey of brown fat in the neck and axilla of mammals at birth, Biol. Neonate, 1971, vol. 17, pp. 53–83.

    Article  CAS  PubMed  Google Scholar 

  135. Rudas, P. and Pethes, G., Studies on the conversion of thyroxine to 3,5,3'-triiodothyronine in normal and thyroidectomized chickens, Gen. Comp. Endocrinol., 1984, vol. 54, pp. 154–161.

    Article  CAS  PubMed  Google Scholar 

  136. Runcie, R.M., Dewar, H., Hawn, D.R., et al., Evidence for cranial endothermy in the opah (Lampris guttatus), J. Exp. Biol., 2009, vol. 212, pp. 461–470.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ruuskanen, S., Hsu, B.-Y., and Nord, A., Endocrinology of thermoregulation in birds in a changing climate, Mol. Cell. Endocrinol., 2021, vol. 519, p. 111088.

    Article  CAS  PubMed  Google Scholar 

  138. Saarela, S., Keith, J.S., Hohtola, E., and Trayhurn, P., Is the “mammalian” brown fat-specific mitochondrial uncoupling protein present in adipose tissues of birds?, Comp. Biochem. Physiol., 1991, vol. 100, pp. 45–49.

    CAS  Google Scholar 

  139. Sahoo, S.K., Shaikh, S.A., Sopariwala, D.H., et al., The N terminus of sarcolipin plays an important role in uncoupling sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) ATP hydrolysis from Ca2+ transport, J. Biol. Chem., 2015, vol. 290, pp. 14057–14067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Saito, S., Saito, C.T., and Shingai, R., Adaptive evolution of the uncoupling protein 1 gene contributed to the acquisition of novel nonshivering thermogenesis in ancestral eutherian mammals, Gene, 2008, vol. 408, pp. 37–44.

    Article  CAS  PubMed  Google Scholar 

  141. Sanders, C.J., Santos, I.R., Maher, D.T., et al., Dissolved iron exports from an estuary surrounded by coastal wetlands: Can small estuaries be a significant source of fe to the ocean?, Mar. Chem., 2015, vol. 176, pp. 75–82.

    Article  CAS  Google Scholar 

  142. Sapsford, C.W. and Hughes, G.R., Body temperature of the loggerhead sea turtle Caretta caretta and the leatherback sea turtle Dermochelys coriacea during nesting, Zool. Afr., 1978, vol. 18, no. 1, pp. 63–69.

    Google Scholar 

  143. Schaeffer, P.J., Villarin, J.J., and Lindstedt, S.L., Chronic cold exposure increases skeletal muscle oxidative structure and function in Monodelphis domestica, a marsupial lacking brown adipose tissue, Physiol. Biochem. Zool., 2003, vol. 76, pp. 877–887.

    Article  CAS  PubMed  Google Scholar 

  144. Schaeffer, P.J., Villarin, J.J., Pierotti, D.J., et al., Cost of transport is increased after cold exposure in Monodelphis domestica: Training for inefficiency, J. Exp. Biol., 2005, vol. 208, pp. 3159–3167.

    Article  PubMed  Google Scholar 

  145. Schwartz, T.S., Murray, S., and Seebacher, F., Novel reptilian uncoupling proteins: Molecular evolution and gene expression during cold acclimation, Proc. Biol. Sci., 2008, vol. 275, pp. 979–985.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Seebacher, F., Grigg, G.C., and Beard, L.A., Crocodiles as dinosaurs: Behavioural thermoregulation in very large ectotherms leads to high and stable body temperatures, J. Exp. Biol., 1999, vol. 202, pp. 77–86.

    Article  CAS  PubMed  Google Scholar 

  147. Sepulveda, C., Dickson, K., Frank, L., and Graham, J., Cranial endothermy and a putative brain heater in the most basal tuna species, Allothunnus fallai, J. Fish. Biol., 2007, vol. 70, pp. 1720–1733.

    Article  Google Scholar 

  148. Sepulveda, C., Dickson, K., Bernalk, D., et al., Elevated red myotomal muscle temperatures in the most basal tuna species, Allothunnus fallai, J. Fish. Biol., 2008, vol. 73, pp. 241–249.

    Article  Google Scholar 

  149. Shabalina, I.G., Hoeks, J., Kramarova, T.V., et al., Cold tolerance of UCP1-ablated mice: A skeletal muscle mitochondria switch toward lipid oxidation with marked UCP3 up-regulation not associated with increased basal, fatty acid- or ROS-induced uncoupling or enhanced GDP effects, Biochim. Biophys. Acta, 2010, vol. 1797, pp. 968–980.

    Article  CAS  PubMed  Google Scholar 

  150. Silva, J.E., Thermogenic mechanisms and their hormonal regulation, Physiol. Rev., 2006, vol. 86, pp. 435–464.

    Article  CAS  PubMed  Google Scholar 

  151. Simonyan, R.A., Jimenez, M., Ceddia, R.B., et al., Cold-induced changes in the energy coupling and the UCP3 level in rodent skeletal muscles, Biochim. Biophys. Acta, 2001, vol. 1505, pp. 271–279.

    Article  CAS  PubMed  Google Scholar 

  152. Sirsat, S.K., Sirsat, T.S., Crossley, J.L., et al., The 12-day thermoregulatory metamorphosis of red-winged blackbirds (Agelaius phoeniceus), J. Comp. Physiol., 2016, vol. 186, pp. 651–663.

    Article  Google Scholar 

  153. Slip, D.J. and Shine, R., Reptilian endothermy: A field study of thermoregulation by brooding diamond pythons, J. Zool., 1988, vol. 216, no. 2, pp. 367–378.

    Article  Google Scholar 

  154. Smith, E. and Morowitz, H.J., Universality in intermediary metabolism, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 13168–13173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Smith, E.N., Thermoregulation of the American alligator, Alligator mississippiensis, Physiol. Zool., 1975, vol. 48, no. 2, pp. 177–194.

    Article  Google Scholar 

  156. Smith, W.S., Broadbridge, R., East, J.M., and Lee, A.G., Sarcolipin uncouples hydrolysis of ATP from accumulation of Ca2+ by the Ca2+-ATPase of skeletal-muscle sarcoplasmic reticulum, Biochem. J., 2002, vol. 361, pp. 277–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Snow, R.W., Wolf, A.J., Greeves, B.W., et al., Thermoregulation by a brooding burmese python (Python molurus bivittatus) in Florida, Southeastern Naturalist, 2010, vol. 9, pp. 403–405.

    Article  Google Scholar 

  158. Stager, M. and Cheviron, Z.A., Is there a role for sarcolipin in avian facultative thermogenesis in extreme cold?, Biol. Lett., 2020, vol. 16, p. 20200078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Stahlschmidt, Z.R. and DeNardo, D.F., Effect of nest temperature on egg-brooding dynamics in children’s pythons, Physiol. Behav., 2009, vol. 98, pp. 302–306.

    Article  CAS  PubMed  Google Scholar 

  160. Standora, E.A., Spotila, J.R., and Foley, R.E., Regional endothermy in the sea turtle, Chelonia mydas, J. Therm. Biol., 1982, vol. 7, pp. 159–165.

    Article  Google Scholar 

  161. Stevens, E.D., The retia, in Encyclopedia of Fish Physiology: From Genome to Environment, Farrell, A.P., Ed., San Diego: Acad. Press, 2011, pp. 1119–1131.

    Google Scholar 

  162. Swanson, D., Seasonal metabolic variation in birds: functional and mechanistic correlates, in Current Ornithology, Thompson, C.F., Ed., New York: Springer, 2010, vol. 17, pp. 75–129.

    Google Scholar 

  163. Talbot, D.A., Duchamp, C., Rey, B., et al., Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins, J. Physiol., 2004, vol. 558, pp. 123–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tattersall, G.J., Reptile thermogenesis and the origins of endothermy, Zoology, 2016, vol. 119, pp. 403–405.

    Article  PubMed  Google Scholar 

  165. Tattersall, G.J., Milsom, W.K., Abe, A.S., et al., The thermogenesis of digestion in rattlesnakes, J. Exp. Biol., 2004, vol. 207, pp. 579–585.

    Article  PubMed  Google Scholar 

  166. Tattersall, G.J., Leite, C.A., Sanders, C.E., et al., Seasonal reproductive endothermy in tegu lizards, Sci. Adv., 2016, vol. 2, p. e1500951.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Teulier, L., Rouanet, J.L., Letexier, D., et al., Cold-acclimation-induced nonshivering thermogenesis in birds is associated with upregulation of avian UCP but not with innate uncoupling or altered ATP efficiency, J. Exp. Biol., 2010, vol. 213, pp. 2476–2482.

    Article  CAS  PubMed  Google Scholar 

  168. Teulier, L., Rouanet, J.L., Rey, B., and Roussel, D., Ontogeny of nonshivering thermogenesis in muscovy ducklings (Cairina moschata), Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2014, vol. 175, pp. 82–89.

    Article  CAS  Google Scholar 

  169. Tigerstedt, R., Die Produktion von Wärme und der Wärmehaushalt. Handbuch der vergleichenden Physiologie, Winterstein, H., Ed., Jéna: Springer, 1910.

    Google Scholar 

  170. Torre-Bueno, J.R. and Larochelle, J., The metabolic cost of flight in unrestrained birds, J. Exp. Biol., 1978, vol. 75, pp. 223–229.

    Article  CAS  PubMed  Google Scholar 

  171. Toyomizu, M., Ueda, M., Sato, S., et al., Cold-induced mitochondrial uncoupling and expression of chicken UCP and ant mRNA in chicken skeletal muscle, FEBS Lett., 2002, vol. 529, pp. 313–318.

    Article  CAS  PubMed  Google Scholar 

  172. Troshin, A.S. and Troshina, V.P., Fiziologiya kletki (Cell Physiology), Moscow: Prosveshchenie, 1978.

  173. Tucker, V.A., Respiratory exchange and evaporative water loss in the flying budgerigar, J. Exp. Biol., 1968, vol. 48, pp. 67–87.

    Article  Google Scholar 

  174. Tucker, V.A., Metabolism during flight in the laughing gull, Larus atricilla, Am. J. Physiol., 1972, vol. 222, pp. 237–245.

    Article  CAS  PubMed  Google Scholar 

  175. Ueda, M., Watanabe, K., Sato, K., et al., Possible role for avPGC-1alpha in the control of expression of fiber type, along with avUCP and avant mRNAs in the skeletal muscles of cold-exposed chickens, FEBS Lett., 2005, vol. 579, pp. 11–17.

    Article  CAS  PubMed  Google Scholar 

  176. Valensiennes, A., Obsrevations faites pendant l’incubation d’une femelle du python a deux raies (Python bivittatus, Kuhl.) pendant les mois de mai et de juin 1841, Paris: Comp. Rend., Acad. Sci., 1841, vol. 13, pp. 126–133.

    Google Scholar 

  177. van Mierop, L.H.S. and Barnard, S.M., Observations on the reproduction of Python molurus bivittatus (Reptilia, Serpentes, Boidae), J. Herpetol., 1976a, vol. 10, no. 4, pp. 333–340.

    Article  Google Scholar 

  178. van Mierop, L.H.S. and Barnard, S.M., Thermoregulation in a brooding female Python molurus bivittatus (Serpentes: Boidae), Copeia, 1976b, no. 2, pp. 398–401.

  179. Vernon, H.M., The relation of the respiratory exchange of cold-blooded animals to temperature, J. Phisiol., 1897, vol. 21, pp. 443–496.

    Article  CAS  Google Scholar 

  180. Walter, I. and Seebacher, F., Endothermy in birds: Underlying molecular mechanisms, J. Exp. Biol., 2009, vol. 212, pp. 2328–2336.

    Article  CAS  PubMed  Google Scholar 

  181. Wang, W.P., Wang, J.Y., Lin, W.H., et al., Progerin in muscle leads to thermogenic and metabolic defects via impaired calcium homeostasis, Aging Cell, 2020, vol. 19, p. e13090.

    Article  CAS  PubMed  Google Scholar 

  182. Ward, S., Moller, U., Rayner, J.M., et al., Metabolic power, mechanical power and efficiency during wind tunnel flight by the european starling Sturnus vulgaris, J. Exp. Biol., 2001, vol. 204, pp. 3311–3322.

    Article  CAS  PubMed  Google Scholar 

  183. Watanabe, Y., Goldman, K., Caselle, J., et al., Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes, Proc. Natl. Acad. Sci. USA, 2015, vol. 112, pp. 6104–6109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wegner, N.C., Snodgrass, O.E., Dewar, H., and Hyde, J.R., Animal physiology. Whole-body endothermy in a mesopelagic fish, the opah, Lampris guttatus, Science, 2015, vol. 348, pp. 786–789.

    Article  CAS  PubMed  Google Scholar 

  185. Whitney, M.R., Otoo, B.K.A., Angielczyk, K.D., and Pierce, S.E., Fossil bone histology reveals ancient origins for rapid juvenile growth in tetrapods, Commun. Biol., 2022, vol. 5, p. 1280.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Ye, J.M., Edwards, S.J., Rose, R.W., et al., Vasoconstrictors alter oxygen, lactate, and glycerol metabolism in the perfused hindlimb of a rat kangaroo, Am. J. Physiol., 1995, vol. 268, pp. R1217–R1223.

    CAS  PubMed  Google Scholar 

  187. Ye, J.M., Edwards, S.J., Rose, R.W., et al., Alpha-adrenergic stimulation of thermogenesis in a rat kangaroo (Marsupialia, Bettongia gaimardi), Am. J. Physiol., 1996, vol. 271, pp. R586–R582.

    CAS  PubMed  Google Scholar 

  188. Zhang, Y., Carter, T., Eyster, K., and Swanson, D.L., Acute cold and exercise training up-regulate similar aspects of fatty acid transport and catabolism in house sparrows (Passer domesticus), J. Exp. Biol., 2015, vol. 218, pp. 3885–3893.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Cherlin.

Ethics declarations

The author declares that he has no conflict of interest.

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherlin, V.A. Preadaptivity of Noncontractile Thermogenesis in the Evolution of Warm-Bloodedness in Vertebrates. Biol Bull Rev 13, 647–664 (2023). https://doi.org/10.1134/S2079086423060051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086423060051

Keywords:

Navigation