Skip to main content
Log in

Reasoning about Dependence, Preference and Coalitional Power

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

This paper presents a logic of preference and functional dependence (LPFD) and its hybrid extension (HLPFD), both of whose sound and strongly complete axiomatization are provided. The decidability of LPFD is also proved. The application of LPFD and HLPFD to modelling cooperative games in strategic form is explored. The resulted framework provides a unified view on Nash equilibrium, Pareto optimality and the core. The philosophical relevance of these game-theoretical notions to discussions of collective agency is made explicit. Some key connections with other logics are also revealed, for example, the coalition logic, the logic of functional dependence and the logic of ceteris paribus preference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Not applicable

References

  1. Alur, R., Henzinger, T., & Kupferman, O. (2002). Alternating-time temporal logic. Journal of the ACM, 49, 672–713. https://doi.org/10.1145/585265.585270

    Article  Google Scholar 

  2. Baier, A.C. (1997). Doing things with others: The mental commons. In: Commonality and particularity in ethics, pp. 15–44. Springer

  3. Baltag, A., & van Benthem, J. (2021). A simple logic of functional dependence. Journal of Philosophical Logic, 50, 939–1005. https://doi.org/10.1017/CBO9780511616037

    Article  Google Scholar 

  4. Baltag, A., van Benthem, J., Li, D. (2022). A logical analysis of dynamic dependence

  5. van Benthem, J. (2014). Logic in Games. Cambridge, Massachusetts: London, England The Mit Press.

    Book  Google Scholar 

  6. van Benthem, J., Roy, O., & Girard, P. (2007). Everything else being equal: a modal logic approach to ceteris paribus preferences. Journal of Philosophical Logic, 38, 83–125.

    Article  Google Scholar 

  7. Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge Tracts in Theoretical Computer Science. Cambridge: Cambridge University Press.

    Google Scholar 

  8. Conzalez, S., & Lardon, A. (2021). Axiomatic foundations of the core for games in effectiveness form. Mathematical Social Sciences, 114, 28–38. https://doi.org/10.1016/j.mathsocsci.2021.09.001

    Article  Google Scholar 

  9. Galliani, P. (2021). Dependence Logic. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Stanford University: Metaphysics Research Lab, Summer 2021 edn.

  10. Goranko, V., & Jamroga, W. (2004). Comparing semantics of logics for multi-agent systems. Synthesis, 139, 241–280. https://doi.org/10.1061/j.mathsocsci.2021.09.001

    Article  Google Scholar 

  11. Hansson, S.O. (2002) Preference logic. In: D.M. Gabbay, F. Guenthner, (eds.) Handbook of Philosophical Logic, pp. 319–393. Springer Netherlands: Dordrecht. https://doi.org/10.1007/978-94-017-0456-4_4

  12. Liu, F. (2011). Reasoning about Preference Dynamics. Springer.

    Book  Google Scholar 

  13. Meijers, A. M. (2003). Can collective intentionality be individualized? American Journal of Economics and Sociology, 62(1), 167–183.

    Article  Google Scholar 

  14. Pauly, M. (2002). A modal logic for coalitional power in games. Journal of Logic and Computation, 12, 149–166. https://doi.org/10.1093/logcom/12.1.149

    Article  Google Scholar 

  15. Peleg, B., & Sudhölter, P. (2007). Introduction to the Theory of Cooperative Games. Springer Verlag.

    Google Scholar 

  16. Roth, A.S. (2017) Shared Agency. In: E.N. Zalta (ed) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab: Stanford University, summer 2017 edn.

  17. Schmid, H. B. (2003). Can brains in vats think as a team? Philosophical Explorations, 6(3), 201–217.

    Article  Google Scholar 

  18. Väänänen, J. (2007). Dependence Logic: A New Approach to Independence Friendly Logic. Cambridge University Press.

    Book  Google Scholar 

  19. van der Hoek, W., Pauly, M. (2007) 20 modal logic for games and information. In: P. Blackburn., J. Van Benthem., F. Wolter (eds.) Handbook of Modal Logic, Studies in Logic and Practical Reasoning, vol. 3, pp. 1077–1148. Elsevier. https://doi.org/10.1016/S1570-2464(07)80023-1

  20. Wang, Y., Stokhof, M. (2022). A relational perspective on collective agency. Philosophies 7(3). https://doi.org/10.3390/philosophies7030063

  21. Ågotnes, T., van der Hoek, W., & Wooldridge, M. (2009). Reasoning about coalitional games. Artificial Intelligence, 173(1), 45–79. https://doi.org/10.1016/j.artint.2008.08.004

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Tsinghua University Initiative Scientific Research Program. We want to thank Johan van Benthem, Fenrong Liu, and Martin Stokhof for their invaluable feedback to the early versions of the paper. We also thank the two reviewers whose comments and suggestions help improve the paper substantially. We want to thank Johan van Benthem, Fenrong Liu, and Martin Stokhof for their invaluable feedback to the early versions of the paper. We also thank the two reviewers whose comments and suggestions help improve the paper substantially.

Funding

This research is supported by Tsinghua University Initiative Scientific Research Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute equally to the submitted work.

Corresponding author

Correspondence to Chenwei Shi.

Ethics declarations

Competing interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethics approval and consent to participate

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Strong Completeness of \(\textsf{C}_\textsf{Nom}\)

The strategic of our proof is to show that every \(\textsf{C}_\textsf{Nom}\)-consistent set \(\Gamma \) of formulas is satisfiable. Let \(\Gamma \) be a fixed consistent set. We first show the follow lemma:

Lemma 1

Let \(\Gamma \) be a \(\textsf{C}_\textsf{Nom}\)-consistent set and \(\mathsf {Nom'}=\textsf{Nom}\cup \{j_n:n\in \omega \}\). Then \(\Gamma \) can be extended to a maximal \(\textsf{C}_\mathsf {Nom'}\)-consistent set \(\Gamma ^+\) of formulas satisfying the following conditions:

  1. (Named)

    \(\Gamma ^+\cap \mathsf {Nom'}\ne \varnothing \);

  2. (Pasted)

    For all \(@_i\langle \hspace{-5.0pt}\langle \hspace{1.111pt}X,Y,Z\hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}\varphi \in \Gamma ^+\), there is a nominal \(j\in \mathsf {Nom'}\) such that \(@_i\langle \hspace{-5.0pt}\langle \hspace{1.111pt}X,Y,Z\hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}j\wedge @_j\varphi \in \Gamma ^+\).

The proof of Lemma 9 is standard. Since \(\textsf{Nom}\) is countable, we can assume that \(\Gamma \) itself is a named and pasted \(\textsf{C}_\mathsf {Nom'}\)-MCS without loss of generality.

For each \(i\in \textsf{Nom}\) such that \(@_i\top \in \Gamma \), we define \(\Delta _i=\{\varphi :@_i\varphi \in \Gamma \}\). The readers can check that \(\Delta _i\) is a MCS for each \(i\in \textsf{Nom}\).

Definition 1

The canonical model \(\mathfrak {M}_\Gamma =(W_\Gamma ,\sim _\Gamma ,\le _\Gamma ,V_\Gamma )\) is defined by:

  • \(W_\Gamma =\{\Delta _i:@_i\top \in \Gamma \}\);

  • for each \(v\in \textsf{V}\), \(\Delta _i\sim _v\Delta _j\) if and only if \(@_i\langle \hspace{-5.0pt}\langle \hspace{1.111pt}\{v\},\varnothing ,\varnothing \hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}j\in \Gamma \);

  • for each \(v\in \textsf{V}\), \(\Delta _i\le _v\Delta _j\) if and only if \(@_i\langle \hspace{-5.0pt}\langle \hspace{1.111pt}\varnothing ,\{v\},\varnothing \hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}j\in \Gamma \);

  • \(V(P\textbf{x})=\{\Delta _i:@_iP\textbf{x}\in \Gamma \}\) and \(V(i)=\Delta _i\).

Lemma 2

\(\mathfrak {M}_\Gamma =(W,\sim ,\le ,V)\) is an HRPD-model.

Proof

Since \(\Gamma \) is named, \(W_\Gamma \ne \varnothing \). Let \(v\in \textsf{V}\). By axiom (Ord,1,2,3), \(\sim _v\) is a pre-order and \(\le _v\) is an equivalence relation. Note that \(V(i)\in W\) for each \(i\in \textsf{Nom}\cap \text {dom}(V)\). To show that \(\mathfrak {M}_\Gamma \) is an HRPD-model, it suffices to show that V satisfies (Val). Let \(P\in \textsf{Pred}\) and \(\textbf{x}\in \textsf{V}^{\textsf{ar}(P)}\). Suppose \(\Delta _i\sim _{\textsf{ran}(\textbf{x})}\Delta _j\) and \(\Delta _i\in V(P\textbf{x})\). Then \(P\textbf{x}\in \Delta _i\). By (Dep), \(\mathbb {D}_XP\textbf{x}\in \Delta _i\), which entails \(P\textbf{x}\in \Delta _j\). \(\square \)

Lemma 3

Let \(\mathfrak {M}_\Gamma =(W,\sim ,\le ,V)\), \(i\in \textsf{Nom}\) and \(\Delta _i\in W\). Then

  1. (1)

    If \(\langle \hspace{-5.0pt}\langle \hspace{1.111pt}X,Y,Z\hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}j\in \Delta _i\), then \(\Delta _iR(X,Y,Z)\Delta _j\);

  2. (2)

    If \(@_i\langle \hspace{-5.0pt}\langle \hspace{1.111pt}X,Y,Z\hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}\varphi \in \Gamma \), then there is \(j\in \textsf{Nom}\) with \(\varphi \in \Delta _j\) and \(\Delta _iR(X,Y,Z)\Delta _j\).

  3. (3)

    \(D_Xs\in \Delta _i\) if and only if \(\mathfrak {M}_\Gamma ,\Delta _i\models D_Xs\).

  4. (4)

    For all \(\varphi \in \mathcal {L}_\textsf{Nom}\), \(\varphi \in \Delta _i\) if and only if \(\mathfrak {M}_\Gamma ,\Delta _i\models \varphi \).

Proof

For (1), suppose \(\langle \hspace{-5.0pt}\langle \hspace{1.111pt}X,Y,Z\hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}j\in \Delta _i\). By axiom (Ord,5), we see \(\langle \hspace{-5.0pt}\langle \hspace{1.111pt}\{x\},\varnothing ,\varnothing \hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}j,\) \(\langle \hspace{-5.0pt}\langle \hspace{1.111pt}\varnothing ,\{y\},\varnothing \hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}j,\) \(\langle \hspace{-5.0pt}\langle \hspace{1.111pt}\varnothing ,\varnothing ,\{z\}\hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}j\in \Delta _i\) for all \(x\in X\), \(y\in Y\) and \(z\in Z\), which entails by axiom (Ord,4) that \(\Delta _i\sim _X\Delta _j\), \(\Delta _i\le _Y\Delta _j\) and \(\Delta _i<_Z\Delta _j\). Thus \(\Delta _iR(X,Y,Z)\Delta _j\).

For (2), suppose \(@_i\langle \hspace{-5.0pt}\langle \hspace{1.111pt}X,Y,Z\hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}\varphi \in \Gamma \). Since \(\Gamma \) is pasted, there is \(j\in \textsf{Nom}\) such that \(@_i\langle \hspace{-5.0pt}\langle \hspace{1.111pt}X,Y,Z\hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}j\wedge @_j\varphi \in \Gamma \). Thus \(\varphi \in \Delta _j\) and \(\Delta _iR(X,Y,Z)\Delta _j\).

For (3), suppose \(D_Xs\in \Delta _i\) and \(\Delta _i\sim _X\Delta _j\). We show that \(\langle \hspace{-5.0pt}\langle \hspace{1.111pt}\{s\},\varnothing ,\varnothing \hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}j\in \Delta _i\). Assume \(\langle \hspace{-5.0pt}\langle \hspace{1.111pt}\{s\},\varnothing ,\varnothing \hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}j\not \in \Delta _i\). Then by axiom (DD,1), we see \(\mathbb {D}_X\lnot j\in \Delta _i\), which contradicts to \(\Delta _i\sim _X\Delta _j\). Thus \(\mathfrak {M}_\Gamma ,\Delta _i\models D_Xs\). Suppose \(D_Xs\not \in \Delta _i\). Then \(i\wedge \lnot D_Xs\in \Delta _i\). By axiom (DD,2), we see \(@_i\langle \hspace{-5.0pt}\langle \hspace{1.111pt}X,\varnothing ,\varnothing \hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}\mathbb {D}_s\lnot i\in \Gamma \). Since \(\Gamma \) is pasted, there is \(j\in \textsf{Nom}\) such that \(@_i\langle \hspace{-5.0pt}\langle \hspace{1.111pt}X,\varnothing ,\varnothing \hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}j\wedge @_j\mathbb {D}_s\lnot i\in \Gamma \). Thus \(\Delta _i\sim _X\Delta _j\) and \(\Delta _i\not \sim _s\Delta _j\). Note that \(\sim _s\) is symmetric, \(\Delta _j\not \sim _s\Delta _i\). Thus \(\mathfrak {M}_\Gamma ,\Delta _i\not \models D_Xs\).

For (4), the proof proceeds by induction on the complexity of \(\varphi \). The case when \(\varphi =D_Xs\) follows from (3). The case \(\varphi =P\textbf{x}\) or \(\varphi \in \textsf{Nom}\) is trivial. The Boolean cases are also trivial. Let \(\varphi =\llbracket {X,Y,Z}\rrbracket \psi \). Assume \(\llbracket {X,Y,Z}\rrbracket \psi \not \in \Delta _i\). Then \(\langle \hspace{-5.0pt}\langle \hspace{1.111pt}X,Y,Z\hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}\lnot \psi \in \Delta _i\) and so \(@_i\langle \hspace{-5.0pt}\langle \hspace{1.111pt}X,Y,Z\hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}\lnot \psi \in \Gamma \). By (2), \(\lnot \psi \in \Delta _j\) for some \(\Delta _j\in R(X,Y,Z)(\Delta _i)\). Then \(\psi \not \in \Delta _j\) and by induction hypothesis, \(\mathfrak {M}_\Gamma ,\Delta _j\not \models \psi \), which entails \(\mathfrak {M}_\Gamma ,\Delta _i\not \models \llbracket {X,Y,Z}\rrbracket \psi \). Assume that \(\mathfrak {M}_\Gamma ,\Delta _i\not \models \llbracket {X,Y,Z}\rrbracket \psi \). Then there is \(\Delta _j\in R(X,Y,Z)(\Delta _i)\) such that \(\mathfrak {M}_\Gamma ,\Delta _j\not \models \psi \). By induction hypothesis, \(\psi \not \in \Delta _j\) and so \(\lnot \psi \wedge j\in \Delta _j\). Note that \(\langle \hspace{-5.0pt}\langle \hspace{1.111pt}X,Y,Z\hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}j\in \Delta _i\), we see \(\langle \hspace{-5.0pt}\langle \hspace{1.111pt}X,Y,Z\hspace{1.111pt}\rangle \hspace{-5.0pt}\rangle \hspace{1.38885pt}\lnot \psi \in \Delta _i\), which entails \(\llbracket {X,Y,Z}\rrbracket \psi \not \in \Delta _i\). \(\square \)

Theorem. \(\textsf{C}_\textsf{Nom}\) is sound and strongly complete.

Proof

Soundness is not hard to verify. By Lemma 11, \(\mathfrak {M}_\Gamma ,\Gamma \models \Gamma \). By the arbitrariness of \(\Gamma \), we obtain the strong completeness. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Shi, C. & Wang, Y. Reasoning about Dependence, Preference and Coalitional Power. J Philos Logic 53, 99–130 (2024). https://doi.org/10.1007/s10992-023-09727-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-023-09727-2

Keywords

Navigation