Skip to main content
Log in

What Can We Learn about Compton-Thin AGN Tori from Their X-ray Spectra? *

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We have developed a Monte Carlo code for simulation of X-ray spectra of active galactic nuclei (AGN) based on a model of a clumpy obscuring torus. Using this code, we investigate the diagnostic power of X-ray spectroscopy of obscured AGN with respect to the physical properties and orientation of the torus, namely: the average column density, \(\langle N_{\textrm{H}}\rangle\), the line-of-sight column density, \(N_{\textrm{H}}\), the abundance of iron, \(A_{\textrm{Fe}}\), the clumpiness (i.e., the average number of gas clouds along the line of sight), \(\langle N\rangle\), and the viewing angle, \(\alpha\). In this first paper of a series, we consider the Compton-thin case, where both \(\langle N_{\textrm{H}}\rangle\) and \(N_{\textrm{H}}\) do not exceed \(10^{24}\) cm\({}^{-2}\). To enable quantitative comparison of the simulated spectra, we introduce five measurable spectral characteristics: the low-energy hardness ratio (ratio of the continuum fluxes in the 7–11 and 2–7 keV energy bands), the high-energy hardness ratio (ratio of the continuum fluxes in the 10–100 and 2–10 keV energy bands), the depth of the iron K absorption edge, the equivalent width of the Fe K\(\alpha\) line, and the fraction of the Fe K\(\alpha\) flux contained in the Compton shoulder. We demonstrate that by means of X-ray spectroscopy it is possible to tightly constrain \(\langle N_{\textrm{H}}\rangle\), \(N_{\textrm{H}}\), and \(A_{\textrm{Fe}}\) in the Compton-thin regime, while there is degeneracy between clumpiness and viewing direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Notes

  1. And also if the kinematics of the obscuring clouds were taken into account.

  2. At lower energies, additional soft components of various nature are often observed in the spectra of obscured AGN (e.g., Guainazzi and Bianchi 2007).

REFERENCES

  1. R. Antonucci, Ann. Rev. Astron. Astrophys. 31, 473 (1993).

    Article  ADS  Google Scholar 

  2. J. Buchner, M. Brightman, K. Nandra, R. Nikutta, and F. E. Bauer, Astron. Astrophys. 629, A16 (2019).

    Article  ADS  Google Scholar 

  3. J. Buchner, M. Brightman, M. Balokovic, K. Wada, F. E. Bauer, and K. Nandra, Astron. Astrophys. 651, A58 (2021).

    Article  ADS  Google Scholar 

  4. D. Burlon, M. Ajello, J. Greiner, A. Comastri, A. Merloni, and N. Gehrels, Astrophys. J. 728, 58 (2011).

    Article  ADS  Google Scholar 

  5. C. P. Dullemond and I. M. van Bemmel, Astron. Astrophys. 436, 47 (2005).

    Article  ADS  Google Scholar 

  6. U. Feldman, Phys. Scr. 46, 202 (1992).

    Article  ADS  Google Scholar 

  7. A. Feltre, E. Hatziminaoglou, J. Fritz, and A. Franceschini, Mon. Not. R. Astron. Soc. 426, 120 (2012).

    Article  ADS  Google Scholar 

  8. S. Furui, Y. Fukazawa, H. Odaka, T. Kawaguchi, M. Ohno, and K. Hayashi, Astrophys. J. 818, 164 (2016).

    Article  ADS  Google Scholar 

  9. I. M. George and A. C. Fabian, Mon. Not. R. Astron. Soc. 249, 352 (1991).

    Article  ADS  Google Scholar 

  10. M. Guainazzi and S. Bianchi, Mon. Not. R. Astron. Soc. 374, 1290 (2007).

    Article  ADS  Google Scholar 

  11. R. C. Hickox and D. M. Alexander, Ann. Rev. Astron. Astrophys. 56, 625 (2018).

    Article  ADS  Google Scholar 

  12. J. S. Kaastra and R. Mewe, Astron. Astrophys. Suppl. Ser. 97, 443 (1993).

    ADS  Google Scholar 

  13. Y. Liu and X. Li, Astrophys. J. 787, 52 (2014).

    Article  ADS  Google Scholar 

  14. Y. Liu and X. Li, 29, 2249494 (2015).

  15. A. Malizia, S. Sazonov, L. Bassani, E. Pian, V. Beckmann, M. Molina, I. Mereminskiy, and G. Belanger, New Astron. Rev. 90, 101545 (2020).

    Article  Google Scholar 

  16. A. G. Markowitz, M. Krumpe, and R. Nikutta, Mon. Not. R. Astron. Soc. 439, 1403 (2014).

    Article  ADS  Google Scholar 

  17. A. Merloni et al., Mon. Not. R. Astron. Soc. 437, 3550 (2014).

    Article  ADS  Google Scholar 

  18. M. Nenkova, Z. Ivezic, and M. Elitzur, Astrophys. J. 570, L9 (2002).

    Article  ADS  Google Scholar 

  19. H. Netzer, Ann. Rev. Astron. Astrophys. 53, 365 (2015).

    Article  ADS  Google Scholar 

  20. L. A. Pozdnyakov, I. M. Sobol, and R. A. Syunyaev, 2, 189 (1983).

  21. C. Ramos Almeida and C. Ricci, Nat. Astron. 1, 679 (2017).

    Article  ADS  Google Scholar 

  22. C. Ramos Almeida et al., Astrophys. J. 731, 92 (2011).

    Article  ADS  Google Scholar 

  23. C. Ricci et al., Astrophys. J. 820, 5 (2016).

    Article  ADS  Google Scholar 

  24. G. Risaliti, M. Elvis, G. Fabbiano, A. Baldi, and A. Zeza, Astrophys. J. 623, L93 (2005).

    Article  ADS  Google Scholar 

  25. G. Risaliti, M. Elvis, G. Fabbiano, A. Baldi, A. Zezas, and M. Salvati, Astrophys. J. 659, L111 (2007).

    Article  ADS  Google Scholar 

  26. S. Y. Sazonov and R. A. Sunyaev, Astrophys. J. 543, 28 (2000).

    Article  ADS  Google Scholar 

  27. S. Y. Sazonov and M. G. Revnivtsev, Astron. Astrophys. 423, 469 (2004).

    Article  ADS  Google Scholar 

  28. S. Sazonov, M. Revnivtsev, R. Krivonos, E. Churazov, and R. Sunyaev, Astron. Astrophys. 462, 57 (2007).

    Article  ADS  Google Scholar 

  29. S. Sazonov, E. Churazov, and R. Krivonos, Mon. Not. R. Astron. Soc. 454, 1202 (2015).

    Article  ADS  Google Scholar 

  30. M. Stalevski, C. Ricci, Y. Ueda, P. Lira, J. Fritz, and M. Baes, Mon. Not. R. Astron. Soc. 458, 2288 (2016).

    Article  ADS  Google Scholar 

  31. A. T. Steffen, A. J. Barger, L. L. Cowie, R. F. Mushotzky, and Y. Yang, Astrophys. J. 596, L23 (2003).

    Article  ADS  Google Scholar 

  32. R. A. Sunyaev and E. M. Churazov, Astron. Lett. 22, 648 (1996).

    ADS  Google Scholar 

  33. A. Tanimoto, Y. Ueda, H. Odaka, T. Kawaguchi, Y. Fukazawa, and T. Kawamuro, Astrophys. J. 877, 95 (2019).

    Article  ADS  Google Scholar 

  34. Y. Ueda, M. Akiyama, K. Ohta, and T. Miyaji, Astrophys. J. 598, 886 (2003).

    Article  ADS  Google Scholar 

  35. Y. Ueda, M. Akiyama, G. Hasinger, T. Miyaji, and M. G. Watson, Astrophys. J. 786, 104 (2014).

    Article  ADS  Google Scholar 

  36. D. A. Verner, G. J. Ferland, K. T. Korista, and D. G. Yakovlev, Astrophys. J. 465, 487 (1996).

    Article  ADS  Google Scholar 

  37. D. A. Verner and D. G. Yakovlev, Astron. Astrophys. Suppl. Ser. 109, 125 (1995).

    ADS  Google Scholar 

Download references

Funding

This research was supported by the Russian Science Foundation (grant no. 19-12-00396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sazonov.

Additional information

Translated by the authors

Appendices

APPENDIX A

1.1 IRON \(K\) ABSORPTION EDGE

We have found that the shape of the spectral continuum near the Fe\(K\) absorption edge can be well described (see examples in Fig. 14) by the simple expression

$$F_{E}(E)=\begin{cases}F_{E,0}(E),\quad E\lessapprox E_{K}\\ F_{E,0}(E)N_{\textrm{Fe}},\quad E\gtrapprox E_{K},\end{cases}$$
(A1)

where \(E_{K}=7124\) eV is the energy of the Fe\(K\) edge (Verner et al. 1996) and \(F_{E,0}(E)\) is a linear fitting function (which depends on the particular spectrum).

We fit the spectral continuum with this function (using the \(\chi^{2}\) criterion) simultaneously on both sides of the edge in the energy ranges from 6500 to 6925 eV and from 7140 to 7410 eV. These bands were chosen by trial and error so that (i) they are sufficiently broad to provide enough simulated photons for a precise determination of \(1-N_{\textrm{Fe}}\), (ii) to exclude the innermost region around \(E_{K}\), where the spectral shape can be significantly affected by Compton recoil (the effective width of this region below \(E_{K}\) can be estimated as \(\Delta E\sim 2E_{K}(E_{K}/511\,{\rm keV})\sim 200\) eV) and also slightly by inverse Compton scattering (within \(\Delta E\sim E_{K}\sqrt{2kT_{\textrm{e}}/511\,{\rm keV}}\sim 15\) eV around \(E_{K}\), given the adopted electron temperature \(kT_{\textrm{e}}=1\) eV; see, e.g., Sazonov and Sunyaev 2000), and (iii) fluorescent lines of Fe and Ni do not fall into these bands. The last issue is not important for our numerical results (since we can readily separate spectral continuum from line emission) but can be important in applying a similar fitting procedure to actual X-ray spectroscopy data.

APPENDIX B

1.1 FITTING FUNCTIONS

It is useful to describe some of the trends that we have found for the key spectral characteristics by approximate analytical functions of parameters of the obscurer. Specifically, in application to the \(1-N_{\textrm{Fe}}\) vs. \(H_{\textrm{low}}\) diagram (Fig. 10), we can define the following iso-\(A_{\textrm{Fe}}\) and iso-\(N_{\textrm{H}}\) relations:

$$1-N_{\textrm{Fe}}=H_{\textrm{low}}^{v_{1}(A_{\textrm{Fe}})}+0.5-$$
(B1)
$${}-v_{2}(A_{\textrm{Fe}})\left(H_{\textrm{low}}^{v_{1}(A_{\textrm{Fe}})}+0.5\right)^{2}-v_{3}(A_{\textrm{Fe}}),$$
$$1-N_{\textrm{Fe}}=w_{1}(N_{\textrm{H}})H_{\textrm{low}}+w_{2}(N_{\textrm{H}}),$$

where

$$v_{1}(A_{\textrm{Fe}})=0.21\sqrt{A_{\textrm{Fe}}}+0.47A_{\textrm{Fe}}-0.07,$$
$$v_{2}(A_{\textrm{Fe}})=-0.19\sqrt{A_{\textrm{Fe}}}+0.07A_{\textrm{Fe}},$$
$$v_{3}(A_{\textrm{Fe}})=0.48\sqrt{A_{\textrm{Fe}}}-1.52,$$
$$w_{1}(N_{\textrm{H}})=32.3\sqrt{\eta}+2.8\eta^{0.3}-11.14\eta-27,$$
$$w_{2}(N_{\textrm{H}})=122.9\sqrt{\eta}-162.7\eta^{0.3}-14.9\eta+57.6,$$
$$\eta=N_{\textrm{H}}/10^{22}\,{\rm cm}^{-2}.$$

Table 1. Numerical values of \(b_{0}(N_{\textrm{H}},\langle N_{\textrm{H}}\rangle)\)

\(\langle N_{\textrm{H}}\rangle\backslash N_{\textrm{H}}\)

\(2\times 10^{23}\)

\(5\times 10^{23}\)

\(10^{24}\)

\(10^{23}\)

\(-3.52\)

Not-fitted

Not-fitted

\(2\times 10^{23}\)

\(-3.54\)

\(-4.5\)

Not-fitted

\(5\times 10^{23}\)

\(-3.63\)

\(-4.6\)

\(-5.36\)

\(10^{24}\)

\(-3.88\)

\(-4.8\)

\(-5.56\)

Table 2. Numerical values of \(b_{1}(N_{\textrm{H}},\langle N_{\textrm{H}}\rangle)\)

\(\langle N_{\textrm{H}}\rangle\backslash N_{\textrm{H}}\)

\(2\times 10^{23}\)

\(5\times 10^{23}\)

\(10^{24}\)

\(10^{23}\)

\(-0.87\)

Not-fitted

Not-fitted

\(2\times 10^{23}\)

\(-0.91\)

\(-0.14\)

Not-fitted

\(5\times 10^{23}\)

\(-0.83\)

\(-0.11\)

\(0.03\)

\(10^{24}\)

\(-0.32\)

\(-0.07\)

\(0.05\)

Similarly, the location on the \(1-N_{\textrm{Fe}}\) vs. \(H_{\textrm{high}}\) diagram (Fig. 11) can be approximately given as follows:

$$1-N_{\textrm{Fe}}=b_{0}(N_{\textrm{H}},\langle N_{\textrm{H}}\rangle)+6h-0.9h^{3}$$
(B2)
$${}+b_{1}(N_{\textrm{H}},\langle N_{\textrm{H}}\rangle)h^{5},$$

where \(h=\log_{10}(H_{\textrm{high}})\), and \(b_{0}\) and \(b_{1}\) are two functions that depend on both column densities, \(N_{\textrm{H}}\) and \(\langle N_{\textrm{H}}\rangle\). We do not provide explicit analytical expressions for \(b_{0}(N_{\textrm{H}},\langle N_{\textrm{H}}\rangle)\) and \(b_{1}(N_{\textrm{H}},\langle N_{\textrm{H}}\rangle)\), which would be cumbersome, and just provide in Tables 1 and 2 their numerical values for a number of representative values of \(N_{\textrm{H}}\) and \(\langle N_{\textrm{H}}\rangle\) (where ‘‘not-fitted’’ means that we did not fit the functions for those combinations of \(N_{\textrm{H}}\) and \(\langle N_{\textrm{H}}\rangle\)).

Finally, the dependence of the strength of the Fe\(K\alpha\) Compton shoulder on \(\langle N_{\textrm{H}}\rangle\) (Fig. 13) can be approximated as follows:

$$C_{{\rm K}\alpha}=214.59-165.42\log_{10}(\langle N_{\textrm{H}}\rangle)^{0.23}$$
(B3)
$${}+16.89\log_{10}(\langle N_{\textrm{H}}\rangle)^{0.64}.$$

All these fitting functions were found for the \(\langle N_{\textrm{H}}\rangle\) and \(N_{\textrm{H}}\) between \(10^{23}\) and \(10^{24}\) cm\({}^{-2}\) and \(A_{\textrm{Fe}}\) between 0.5 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melazzini, F., Sazonov, S. What Can We Learn about Compton-Thin AGN Tori from Their X-ray Spectra? *. Astron. Lett. 49, 301–319 (2023). https://doi.org/10.1134/S106377372306004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377372306004X

Keywords:

Navigation