Skip to main content
Log in

Determination of the Spiral Pattern Speed in the Milky Way from Young Open Star Clusters

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We have estimated the spiral pattern speed in the Galaxy \(\Omega_{p}\) from a large sample of young open star clusters (OSCs). For this purpose, we have used 2494 OSCs younger than 50 Myr. Their mean proper motions, line-of-sight velocities, and distances were calculated by Hunt and Reffert (2023) based on data from the Gaia DR3 catalogue. Three methods have been applied to estimate \(\Omega_{p}\). They all are based on the linear Lin–Shu spiral density wave theory. We have obtained an estimate of \(\Omega_{p}=24.26\pm 0.52\) km s\({}^{-1}\) kpc\({}^{-1}\) by the first method, which is most reliable in our view, using the velocity perturbations \(f_{R}\) and \(f_{\theta}\) found through a spectral analysis of the radial, \(V_{R}\), and residual rotation, \(\Delta V_{\rm circ}\), velocities. Using the second method, we have found the velocity perturbations \(f_{R}\) and \(f_{\theta}\) by solving the basic kinematic equations together with the Galactic rotation parameters and obtained an estimate of \(\Omega_{p}=23.45\pm 0.53\) km s\({}^{-1}\) kpc\({}^{-1}\). We have found \(\Omega_{p}=28.9\pm 2.8\) km s\({}^{-1}\) kpc\({}^{-1}\) by the third method based on an analysis of the position angles of OSCs at their birth time \(\theta_{\rm birth}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. L. H. Amaral and J. R. D. Lépine, Mon. Not. R. Astron. Soc. 286, 885 (1997).

    Article  ADS  Google Scholar 

  2. A. T. Bajkova and V. V. Bobylev, Astron. Lett. 38, 549 (2012).

    Article  ADS  Google Scholar 

  3. A. T. Bajkova and V. V. Bobylev, Astron. Lett. 42, 567 (2016).

    Article  ADS  Google Scholar 

  4. A. T. Bajkova and V. V. Bobylev, Open Astron. 26, 72 (2017).

    Article  ADS  Google Scholar 

  5. V. V. Bobylev and A. T. Bajkova, Mon. Not. R. Astron. Soc. 437, 1549 (2014).

    Article  ADS  Google Scholar 

  6. V. V. Bobylev and A. T. Bajkova, Mon. Not. R. Astron. Soc. 447, L50 (2015).

    Article  ADS  Google Scholar 

  7. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 45, 109 (2019).

    Article  ADS  Google Scholar 

  8. V. V. Bobylev and A. T. Bajkova, Astron. Rep. 65, 498 (2021).

    Article  ADS  Google Scholar 

  9. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 48, 376 (2022).

    Article  ADS  Google Scholar 

  10. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 49, 110 (2023).

    Article  ADS  Google Scholar 

  11. V. V. Bobylev, A. T. Bajkova, and A. S. Stepanishchev, Astron. Lett. 34, 515 (2008).

    Article  ADS  Google Scholar 

  12. A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, C. Babusiaux, C. A. L. Bailer-Jones, M. Biermann, D. W. Evans, et al. (Gaia Collab.), Astron. Astrophys. 616, 1 (2018).

    Google Scholar 

  13. A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, C. Babusiaux, M. Biermann, O.L. Creevely, D. W. Evans, et al. (Gaia Collab.), Astron. Astrophys. 649, 1 (2021).

    Google Scholar 

  14. D. Camargo, C. Bonatto, and E. Bica, Mon. Not. R. Astron. Soc. 450, 4150 (2015).

    Article  ADS  Google Scholar 

  15. T. Cantat-Gaudin, F. Anders, A. Castro-Ginard, C. Jordi, M. Romero-Gomez, C. Soubiran, L. Casamiquela, Y. Tarricq, et al., Astron. Astrophys. 640, A1 (2020).

    Article  Google Scholar 

  16. W. S. Dias and J. R. D. Lépine, Astrophys. J. 629, 825 (2005).

    Article  ADS  Google Scholar 

  17. W. S. Dias, J. R. D. Lépine, and B. S. Alessi, Astron. Astrophys. 376, 44 (2001).

    Article  Google Scholar 

  18. W. S. Dias, M. Assafin, V. Flório, B. S. Alessi, and V. Libero, Astron. Astrophys. 446, 949 (2006).

    Article  ADS  Google Scholar 

  19. W. S. Dias, H. Monteiro, J. R. D. Lépine, and D. A. Barros, Mon. Not. R. Astron. Soc. 486, 5726 (2019).

    Article  ADS  Google Scholar 

  20. W. S. Dias, H. Monteiro, A. Moitinho, J. R. D. Lepine, G. Carraro, E. Paunzen, B. Alessi, and L. Villela, Mon. Not. R. Astron. Soc. 504, 356 (2021).

    Article  ADS  Google Scholar 

  21. A.-C. Eilers, D. W. Hogg, H.-W. Rix, and M. K. Ness, Astrophys. J. 871, 120 (2019).

    Article  ADS  Google Scholar 

  22. D. Fernández, F. Figueras, and J. Torra, Astron. Astrophys. 480, 735 (2008).

    Article  ADS  Google Scholar 

  23. E. V. Glushkova, A. K. Dambis, A. M. Mel’nik, and A. S. Rastorguev, Astron. Astrophys. 329, 514 (1998).

    ADS  Google Scholar 

  24. C. J. Hao, Y. Xu, L. G. Hou, S. B. Bian, J. J. Li, Z. Y. Wu, Z. H. He, Y. J. Li, and D. J. Liu, Astron. Astrophys. 652, A102 (2021).

    Article  ADS  Google Scholar 

  25. C. J. Hao, Y. Xu, Z. Y. Wu, Z. H. Lin, D. J. Liu, and Y. J. Li, Astron. Astrophys. 660, A4 (2022).

    Article  ADS  Google Scholar 

  26. E. L. Hunt and S. Reffert, Astron. Astrophys. 673, A114 (2023).

    Article  ADS  Google Scholar 

  27. Y. C. Joshi and S. Malhotra, arXiv: 2212.09384 (2022).

  28. T. C. Junqueira, C. Chiappini, J. R. D. Lépine, I. Minchev, and B. X. Santiago, Mon. Not. R. Astron. Soc. 449, 2336 (2015).

    Article  ADS  Google Scholar 

  29. M. A. Kuhn, L. A. Hillenbrand, A. Sills, E. D. Feigelson, and K. V. Getman, Astrophys. J. 870, 32 (2019).

    Article  ADS  Google Scholar 

  30. J. R. D. Lépine, W. S. Dias, and Yu. Mishurov, Mon. Not. R. Astron. Soc. 386, 2081 (2008).

    Article  ADS  Google Scholar 

  31. C. C. Lin and F. H. Shu, Astrophys. J. 140, 646 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  32. A. V. Loktin and M. E. Popova, Astrophys. Bull. 74, 270 (2019).

    Article  ADS  Google Scholar 

  33. M. Miyamoto and R. Nagai, Publ. Astron. Soc. Jpn. 27, 533 (1975).

    ADS  Google Scholar 

  34. H. Monteiro, D. A. Barros, W. S. Dias, and J. R. D. Lépine, Front. Astron. Space. Sci. 8, 62 (2021).

    Google Scholar 

  35. S. Naoz and N. J. Shaviv, New Astron. 12, 410 (2007).

    Article  ADS  Google Scholar 

  36. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997).

    Article  ADS  Google Scholar 

  37. A. E. Piskunov, N. V. Kharchenko, S. Röser, E. Schilbach, and R.-D. Scholz, Astron. Astrophys. 445, 545 (2006).

    Article  ADS  Google Scholar 

  38. H. C. Plummer, Mon. Not. R. Astron. Soc. 71, 460 (1911).

    Article  ADS  Google Scholar 

  39. M. E. Popova, Astrophys. Bull. 78, 134 (2023).

    Article  ADS  Google Scholar 

  40. M. E. Popova and A. V. Loktin, Astron. Lett. 31, 663 (2005).

    Article  ADS  Google Scholar 

  41. T. Prusti, J. H. J. de Bruijne, A. G. A. Brown, A. Vallenari, C. Babusiaux, C. A. L. Bailer-Jones, U. Bastian, M. Biermann, et al. (Gaia Collab.), Astron. Astrophys. 595, A1 (2016).

    Google Scholar 

  42. A. S. Rastorguev, M. V. Zabolotskikh, A. K. Dambis, N. D. Utkin, V. V. Bobylev, and A. T. Baikova, Astrophys. Bull. 72, 122 (2017).

    Article  ADS  Google Scholar 

  43. K. Rohlfs, Lectures on Density Wave Theory (Springer, Berlin, 1977).

    Google Scholar 

  44. Y. Tarricq, C. Soubiran, L. Casamiquela, T. Cantat-Gaudin, L. Chemin, F. Anders, T. Antoja, M. Romero-Gomez, et al., Astron. Astrophys. 647, A19 (2021).

    Article  Google Scholar 

  45. A. Vallenari, A. G. A. Brown, T. Prusti, J. H. J. de Bruijne, F. Arenou, et al. (Gaia Collab.), arXiv: 2208.0021 (2022).

  46. C. Yuan, Astrophys. J. 158, 889 (1969).

    Article  ADS  Google Scholar 

  47. M. V. Zabolotskikh, A. S. Rastorguev, and A. K. Dambis, Astron. Lett. 28, 454 (2002).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the referees for their useful remarks that contributed to an improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Bobylev.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobylev, V.V., Bajkova, A.T. Determination of the Spiral Pattern Speed in the Milky Way from Young Open Star Clusters. Astron. Lett. 49, 320–330 (2023). https://doi.org/10.1134/S1063773723060014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723060014

Keywords:

Navigation