Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Unleashing Breast Cancer Progression: miR-455-5p's Targeting of SOCS3 Drives Proliferation, Migration, and Invasion

Author(s): Xin Li, Bing Peng, Jian Li, Mi Tian and Lili He*

Volume 30, Issue 12, 2023

Published on: 27 November, 2023

Page: [992 - 1000] Pages: 9

DOI: 10.2174/0109298665245603231106050224

Price: $65

Abstract

Objectives: We aim to investigate the regulatory mechanisms of miR-455-5p/SOCS3 pathway that underlie the proliferation, migration, and invasion of triple-negative breast cancer (TNBC) cells.

Methods: Reverse transcription-quantitative PCR (RT-qPCR) was used to detect miR-455-5p expression in breast cancer tissues and cell lines. CCK8 and Transwell assays were conducted to assess the effects of miR-455-5p on breast cancer line proliferation, migration, and invasion. SOCS3 expression level in breast cancer tissues and cell lines was determined by qPCR and western blotting. The targeting relationship between miR-455-5p and SOCS3 was determined by dual luciferase reporter gene assay in different breast cancer cell lines. Finally, the upstream and downstream regulatory association between miR-455-5p and SOCS3 was confirmed in breast cancer cells by CCK8, western blot, and Transwell assays.

Results: MiR-455-5p expression was up-regulated in breast cancer tissues; miR-455-5p regulates TNBC proliferation, migration, and invasion of TNBC. SOCS3 was the direct target of miR-455-5p and was down-regulated in breast cancer. Interference with SOCS3 reversed the inhibitory effect of the miR-455-5p inhibitor on breast cancer cells' malignant potential.

Conclusion: MiR-455-5p promotes breast cancer progression by targeting the SOCS3 pathway and may be a potential therapeutic target for breast cancer.

Keywords: Triple negative breast cancer, miR-455-5p, SOCS3, TNBC proliferation, qPCR, treatment .

Graphical Abstract
[1]
MacDonald, I.; Nixon, N.A.; Khan, O.F. Triple-negative breast cancer: A review of current curative intent therapies. Curr. Oncol., 2022, 29(7), 4768-4778.
[http://dx.doi.org/10.3390/curroncol29070378] [PMID: 35877238]
[2]
Singh, D.D.; Yadav, D.K. TNBC: Potential targeting of multiple receptors for a therapeutic breakthrough, nanomedicine, and immunotherapy. Biomedicines, 2021, 9(8), 876.
[http://dx.doi.org/10.3390/biomedicines9080876] [PMID: 34440080]
[3]
Zhang, X.; Ge, X.; Jiang, T.; Yang, R.; Li, S. Research progress on immunotherapy in triple-negative breast cancer (Review). Int. J. Oncol., 2022, 61(2), 95.
[http://dx.doi.org/10.3892/ijo.2022.5385] [PMID: 35762339]
[4]
Manjunath, M.; Choudhary, B. Triple-negative breast cancer: A run-through of features, classification and current therapies (Review). Oncol. Lett., 2021, 22(1), 512.
[http://dx.doi.org/10.3892/ol.2021.12773] [PMID: 33986872]
[5]
Won, K.A.; Spruck, C. Triple-negative breast cancer therapy: Current and future perspectives (Review). Int. J. Oncol., 2020, 57(6), 1245-1261.
[http://dx.doi.org/10.3892/ijo.2020.5135] [PMID: 33174058]
[6]
Derakhshan, F; Reis-Filho, JS Pathogenesis of triple-negative breast cancer. Annu. Rev. Pathol., 2022, 17, 18-204.
[7]
Zimmerli, D.; Brambillasca, C.S.; Talens, F.; Bhin, J.; Linstra, R.; Romanens, L.; Bhattacharya, A.; Joosten, S.E.P.; Da Silva, A.M.; Padrao, N.; Wellenstein, M.D.; Kersten, K.; de Boo, M.; Roorda, M.; Henneman, L.; de Bruijn, R.; Annunziato, S.; van der Burg, E.; Drenth, A.P.; Lutz, C.; Endres, T.; van de Ven, M.; Eilers, M.; Wessels, L.; de Visser, K.E.; Zwart, W.; Fehrmann, R.S.N.; van Vugt, M.A.T.M.; Jonkers, J. MYC promotes immune-suppression in triple-negative breast cancer via inhibition of interferon signaling. Nat. Commun., 2022, 13(1), 6579.
[http://dx.doi.org/10.1038/s41467-022-34000-6] [PMID: 36323660]
[8]
Kwapisz, D. Pembrolizumab and atezolizumab in triple-negative breast cancer. Cancer Immunol. Immunother., 2021, 70(3), 607-617.
[http://dx.doi.org/10.1007/s00262-020-02736-z] [PMID: 33015734]
[9]
Bai, X; Ni, J; Beretov, J Triple-negative breast cancer therapeutic resistance: Where is the Achilles' heel?. Cancer Lett, 2021, 495, 100-111.
[10]
Lyons, T.G. Targeted therapies for triple-negative breast cancer. Curr. Treat. Options Oncol., 2019, 20(11), 82.
[http://dx.doi.org/10.1007/s11864-019-0682-x] [PMID: 31754897]
[11]
Correia de Sousa, M.; Gjorgjieva, M.; Dolicka, D.; Sobolewski, C.; Foti, M. Deciphering miRNAs’ action through miRNA editing. Int. J. Mol. Sci., 2019, 20(24), 6249.
[http://dx.doi.org/10.3390/ijms20246249] [PMID: 31835747]
[12]
Balkrishna, A.; Mittal, R.; Arya, V. Potential role of miRNA in metastatic cascade of triple-negative breast cancer. Curr. Cancer Drug Targets, 2021, 21(2), 153-162.
[http://dx.doi.org/10.2174/1568009620999201103201626] [PMID: 33155912]
[13]
Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol., 2019, 234(5), 5451-5465.
[http://dx.doi.org/10.1002/jcp.27486] [PMID: 30471116]
[14]
Kabekkodu, S.P.; Shukla, V.; Varghese, V.K.; D’ Souza, J.; Chakrabarty, S.; Satyamoorthy, K. Clustered miRNAs and their role in biological functions and diseases. Biol. Rev. Camb. Philos. Soc., 2018, 93(4), 1955-1986.
[http://dx.doi.org/10.1111/brv.12428] [PMID: 29797774]
[15]
Wang, J.; Wang, Y.; Sun, D.; Bu, J.; Ren, F.; Liu, B.; Zhang, S.; Xu, Z.; Pang, S.; Xu, S. miR-455-5p promotes cell growth and invasion by targeting SOCO3 in non-small cell lung cancer. Oncotarget, 2017, 8(70), 114956-114965.
[http://dx.doi.org/10.18632/oncotarget.22565] [PMID: 29383133]
[16]
Deng, H.; Shi, H.; Yuan, X.; Zhang, J. Mir-21-5p and Mir-455-5p as markers for diagnosis and prognosis of rectal adenocarcinoma may reduce local CD4+ and CD8+ Lymphocyte Infiltration. Comb. Chem. High Throughput Screen., 2023, 26(12), 2149-2160.
[http://dx.doi.org/10.2174/1386207326666221226155948] [PMID: 36573051]
[17]
Zheng, X.; Rui, S.; Wang, X.F.; Zou, X.H.; Gong, Y.P.; Li, Z.H. circPVT1 regulates medullary thyroid cancer growth and metastasis by targeting miR-455-5p to activate CXCL12/CXCR4 signaling. J. Exp. Clin. Cancer Res., 2021, 40(1), 157.
[http://dx.doi.org/10.1186/s13046-021-01964-0] [PMID: 33962657]
[18]
Yu, H.; Yu, Z.; Wang, X.; Wang, D. Circular RNA circCLK3 promotes the progression of tongue squamous cell carcinoma via miR-455-5p/PARVA axis. Biotechnol. Appl. Biochem., 2022, 69(2), 431-441.
[http://dx.doi.org/10.1002/bab.2120] [PMID: 33655541]
[19]
Hsiao, S.Y.; Weng, S.M.; Hsiao, J.R.; Wu, Y.Y.; Wu, J.E.; Tung, C.H.; Shen, W.L.; Sun, S.F.; Huang, W.T.; Lin, C.Y.; Chen, S.H.; Hong, T.M.; Chen, Y.L.; Chang, J.Y. MiR-455-5p suppresses PDZK1IP1 to promote the motility of oral squamous cell carcinoma and accelerate clinical cancer invasion by regulating partial epithelial-to-mesenchymal transition. J. Exp. Clin. Cancer Res., 2023, 42(1), 40.
[http://dx.doi.org/10.1186/s13046-023-02597-1] [PMID: 36737832]
[20]
Aili, T.; Paizula, X.; Ayoufu, A. miR-455-5p promotes cell invasion and migration in breast cancer. Mol. Med. Rep., 2018, 17(1), 1825-1832.
[PMID: 29257232]
[21]
Wang, B; Zou, A; Ma, L miR-455 inhibits breast cancer cell proliferation through targeting CDK14. European J Pharmacol., 2017, 807, 138-143.
[22]
Bao, C.; Lu, Y.; Chen, J.; Chen, D.; Lou, W.; Ding, B.; Xu, L.; Fan, W. Exploring specific prognostic biomarkers in triple-negative breast cancer. Cell Death Dis., 2019, 10(11), 807.
[http://dx.doi.org/10.1038/s41419-019-2043-x] [PMID: 31649243]
[23]
Pedroso, J.A.B.; Ramos-Lobo, A.M.; Donato, J., Jr SOCS3 as a future target to treat metabolic disorders. Hormones (Athens), 2019, 18(2), 127-136.
[http://dx.doi.org/10.1007/s42000-018-0078-5] [PMID: 30414080]
[24]
Trengove, M.C.; Ward, A.C. SOCS proteins in development and disease. Am. J. Clin. Exp. Immunol., 2013, 2(1), 1-29.
[PMID: 23885323]
[25]
Sobah, ML; Liongue, C; Ward, AC SOCS proteins in immunity, inflammatory diseases, and immune-related cancer. Front Med (Lausanne), 2021, 8, 727987.
[26]
Dai, L; Tao, Y; Shi, Z SOCS3 acts as an onco-immunological biomarker with value in assessing the tumor microenvironment, pathological staging, histological subtypes, therapeutic effect, and prognoses of several types of cancer. Front Oncol, 2022, 12, 881801.
[27]
Khan, MGM; Ghosh, A; Variya, B Hepatocyte growth control by SOCS1 and SOCS3. Cytokine, 2019, 121, 154733.
[28]
Zhang, X.M.; Liu, T.Y.; Li, S.Q.; Han, X.A.; Song, R.; Wang, J.H. SOCS3 protein expression predicts the responses of advanced non-small cell lung cancer patients to platinum-based chemotherapy. Ann. Transl. Med., 2023, 11(2), 94.
[http://dx.doi.org/10.21037/atm-22-6065] [PMID: 36819530]
[29]
Wang, J.; Zhou, H.; Han, Y.; Liu, X.; Wang, M.; Wang, X.; Yin, G.; Li, X.; Xiang, M. SOCS3 methylation in synergy with Reg3A overexpression promotes cell growth in pancreatic cancer. J. Mol. Med. (Berl.), 2014, 92(12), 1257-1269.
[http://dx.doi.org/10.1007/s00109-014-1184-8] [PMID: 24996521]
[30]
Tang, X.; Hao, N.; Zhou, Y.; Liu, Y. Ultrasound targeted microbubble destruction-mediated SOCS3 attenuates biological characteristics and epithelial-mesenchymal transition (EMT) of breast cancer stem cells. Bioengineered, 2022, 13(2), 3896-3910.
[http://dx.doi.org/10.1080/21655979.2022.2031384] [PMID: 35109743]
[31]
Li, Z.; Zheng, J.; Lin, W.; Weng, J.; Hong, W.; Zou, J.; Zhang, T.; Ye, C.; Chen, Y. Circular RNA hsa_circ_0001785 inhibits the proliferation, migration and invasion of breast cancer cells in vitro and in vivo by sponging miR-942 to upregulate SOCS3. Cell Cycle, 2020, 19(21), 2811-2825.
[http://dx.doi.org/10.1080/15384101.2020.1824717] [PMID: 33054543]
[32]
Kim, G.; Ouzounova, M.; Quraishi, A.A.; Davis, A.; Tawakkol, N.; Clouthier, S.G.; Malik, F.; Paulson, A.K.; D’Angelo, R.C.; Korkaya, S.; Baker, T.L.; Esen, E.S.; Prat, A.; Liu, S.; Kleer, C.G.; Thomas, D.G.; Wicha, M.S.; Korkaya, H. SOCS3-mediated regulation of inflammatory cytokines in PTEN and p53 inactivated triple negative breast cancer model. Oncogene, 2015, 34(6), 671-680.
[http://dx.doi.org/10.1038/onc.2014.4] [PMID: 24531711]
[33]
Sun, M.; Tang, C.; Liu, J.; Jiang, W.; Yu, H.; Dong, F.; Huang, C.; Rixiati, Y. Comprehensive analysis of suppressor of cytokine signaling proteins in human breast Cancer. BMC Cancer, 2021, 21(1), 696.
[http://dx.doi.org/10.1186/s12885-021-08434-y] [PMID: 34120621]
[34]
Raccurt, M.; Tam, S.P.; Lau, P.; Mertani, H.C.; Lambert, A.; Garcia-Caballero, T.; Li, H.; Brown, R.J.; McGuckin, M.A.; Morel, G.; Waters, M.J. Suppressor of cytokine signalling gene expression is elevated in breast carcinoma. Br. J. Cancer, 2003, 89(3), 524-532.
[http://dx.doi.org/10.1038/sj.bjc.6601115] [PMID: 12888825]
[35]
Zhang, X.; Liu, Y.; Zhao, J.; Yan, T. MiR-455-5p serves as a biomarker of atherosclerosis and inhibits vascular smooth muscle cell proliferation and migration. Per. Med., 2021, 18(3), 213-221.
[http://dx.doi.org/10.2217/pme-2020-0136] [PMID: 33822652]
[36]
Zhang, Z.; Luo, W.; Han, Y.; Misrani, A.; Chen, H.; Long, C. Effect of microRNA-455-5p (miR-455-5p) on the expression of the cytokine signaling-3 (SOCS3) gene dDuring myocardial infarction. J. Biomed. Nanotechnol., 2022, 18(1), 202-210.
[http://dx.doi.org/10.1166/jbn.2022.3231] [PMID: 35180913]
[37]
Kumar, S.; Ahmad, A.; Kushwaha, N.; Shokeen, N.; Negi, S.; Gautam, K.; Singh, A.; Tiwari, P.; Garg, R.; Agarwal, R.; Mohan, A.; Trikha, A.; Thakar, A.; Saini, V. Selection of ideal reference genes for gene expression analysis in COVID-19 and mucormycosis. Microbiol. Spectr., 2022, 10(6), e01656-22.
[http://dx.doi.org/10.1128/spectrum.01656-22] [PMID: 36377893]
[38]
Barclay, J.L.; Anderson, S.T.; Waters, M.J.; Curlewis, J.D. SOCS3 as a tumor suppressor in breast cancer cells, and its regulation by PRL. Int. J. Cancer, 2009, 124(8), 1756-1766.
[http://dx.doi.org/10.1002/ijc.24172] [PMID: 19115200]
[39]
Ren, J.; Xu, G.; Sun, H.; Lin, T.; Xu, S.; Zhao, Y. Inhibition of miR-483-5p improves the proliferation, invasion and inflammatory response of triple-negative breast cancer cells by targeting SOCS3. Exp. Ther. Med., 2021, 22(4), 1047.
[http://dx.doi.org/10.3892/etm.2021.10480] [PMID: 34434261]
[40]
Saini, R.V.; Thakur, P.; Dahiya, H.; Kaushal, A.; Gupta, V.K.; Saini, A.K. Exosomal miRNAs as next-generation therapy vehicles in breast cancer. Curr. Gene Ther., 2023, 23(5), 330-342.
[http://dx.doi.org/10.2174/1566523223666230215103524] [PMID: 37728084]
[41]
Chen, L.; Heikkinen, L.; Wang, C.; Yang, Y.; Sun, H.; Wong, G. Trends in the development of miRNA bioinformatics tools. Brief. Bioinform., 2019, 20(5), 1836-1852.
[http://dx.doi.org/10.1093/bib/bby054] [PMID: 29982332]
[42]
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[43]
Mulrane, L.; McGee, S.F.; Gallagher, W.M.; O’Connor, D.P. miRNA dysregulation in breast cancer. Cancer Res., 2013, 73(22), 6554-6562.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1841] [PMID: 24204025]
[44]
Garrido-Palacios, A.; Rojas Carvajal, A.M.; Núñez-Negrillo, A.M.; Cortés-Martín, J.; Sánchez-García, J.C.; Aguilar-Cordero, M.J. MicroRNA dysregulation in early breast cancer diagnosis: A systematic review and meta-analysis. Int. J. Mol. Sci., 2023, 24(9), 8270.
[http://dx.doi.org/10.3390/ijms24098270] [PMID: 37175974]
[45]
Zhang, B.; Shetti, D.; Fan, C.; Wei, K. miR-29b-3p promotes progression of MDA-MB-231 triple-negative breast cancer cells through downregulating TRAF3. Biol. Res., 2019, 52(1), 38.
[http://dx.doi.org/10.1186/s40659-019-0245-4] [PMID: 31349873]
[46]
Bertoli, G.; Cava, C.; Castiglioni, I. MicroRNAs: New biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics, 2015, 5(10), 1122-1143.
[http://dx.doi.org/10.7150/thno.11543] [PMID: 26199650]
[47]
Wang, J.; Lu, Y.; Zeng, Y.; Zhang, L.; Ke, K.; Guo, Y. Expression profile and biological function of miR-455-5p in colorectal carcinoma. Oncol. Lett., 2019, 17(2), 2131-2140.
[http://dx.doi.org/10.3892/ol.2017.6454] [PMID: 30675279]
[48]
Xin, Y.; Wang, X.; Meng, K.; Ni, C.; Lv, Z.; Guan, D. Identification of exosomal miR-455-5p and miR-1255a as therapeutic targets for breast cancer. Biosci. Rep., 2020, 40(1), BSR20190303.
[http://dx.doi.org/10.1042/BSR20190303] [PMID: 31763681]
[49]
Lou, T.; Zhang, L.; Jin, Z.; Miao, C.; Wang, J.; Ke, K. miR-455-5p enhances 5-fluorouracil sensitivity in colorectal cancer cells by targeting PIK3R1 and DEPDC1. Open Med. (Wars.), 2022, 17(1), 847-856.
[http://dx.doi.org/10.1515/med-2022-0474] [PMID: 35582195]
[50]
Zou, X.; Sun, P.; Xie, H.; Fan, L.; Ding, K.; Wang, J.; Li, Y. Knockdown of long noncoding RNA HUMT inhibits the proliferation and metastasis by regulating miR-455-5p/LRP4 axis in hepatocellular carcinoma. Bioengineered, 2022, 13(4), 8051-8063.
[http://dx.doi.org/10.1080/21655979.2022.2051841] [PMID: 35293286]
[51]
Jafarzadeh, A.; Chauhan, P.; Nemati, M.; Jafarzadeh, S.; Yoshimura, A. Aberrant expression of suppressor of cytokine signaling ( SOCS ) molecules contributes to the development of allergic diseases. Clin. Exp. Allergy, 2023, cea.14385.
[http://dx.doi.org/10.1111/cea.14385] [PMID: 37641429]
[52]
Dai, L.; Li, Z.; Liang, W.; Hu, W.; Zhou, S.; Yang, Z.; Tao, Y.; Hou, X.; Xing, Z.; Mao, J.; Shi, Z.; Wang, X. SOCS proteins and their roles in the development of glioblastoma (Review). Oncol. Lett., 2021, 23(1), 5.
[http://dx.doi.org/10.3892/ol.2021.13123] [PMID: 34820004]
[53]
Linossi, E.M.; Calleja, D.J.; Nicholson, S.E. Understanding SOCS protein specificity. Growth Factors, 2018, 36(3-4), 104-117.
[http://dx.doi.org/10.1080/08977194.2018.1518324] [PMID: 30318950]
[54]
Ghafouri-Fard, S.; Oskooei, V.K.; Azari, I.; Taheri, M. Suppressor of cytokine signaling (SOCS) genes are downregulated in breast cancer. World J. Surg. Oncol., 2018, 16(1), 226.
[http://dx.doi.org/10.1186/s12957-018-1529-9] [PMID: 30453988]
[55]
Nakagawa, T.; Iida, S.; Osanai, T.; Uetake, H.; Aruga, T.; Toriya, Y.; Takagi, Y.; Kawachi, H.; Sugihara, K. Decreased expression of SOCS-3 mRNA in breast cancer with lymph node metastasis. Oncol. Rep., 2008, 19(1), 33-39.
[http://dx.doi.org/10.3892/or.19.1.33] [PMID: 18097573]
[56]
Xu, J.Z.; Shao, C.C.; Wang, X.J.; Zhao, X.; Chen, J.Q.; Ouyang, Y.X.; Feng, J.; Zhang, F.; Huang, W.H.; Ying, Q.; Chen, C.F.; Wei, X.L.; Dong, H.Y.; Zhang, G.J.; Chen, M. circTADA2As suppress breast cancer progression and metastasis via targeting miR-203a-3p/SOCS3 axis. Cell Death Dis., 2019, 10(3), 175.
[http://dx.doi.org/10.1038/s41419-019-1382-y] [PMID: 30787278]
[57]
Zhang, K.J.; Tan, X.L.; Guo, L. The long non-coding RNA DANCR regulates the inflammatory phenotype of breast cancer cells and promotes breast cancer progression via EZH2-dependent suppression of SOCS3 transcription. Mol. Oncol., 2020, 14(2), 309-328.
[http://dx.doi.org/10.1002/1878-0261.12622] [PMID: 31860165]
[58]
Chu, J; Hu, XC; Li, CC KLF14 alleviated breast cancer invasion and M2 macrophages polarization through modulating SOCS3/RhoA/Rock/STAT3 signaling. Cellular Signalling, 2022, 92, 110242.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy