Skip to main content
Log in

On a quasilinear fully parabolic predator–prey model with indirect pursuit-evasion interaction

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper, we study the quasilinear fully parabolic predator–prey model with indirect pursuit-evasion interaction

$$\begin{aligned} \begin{aligned} \left\{ \begin{aligned}&u_t=\nabla \cdot \left( D_{1}(u)\nabla u\right) -\chi \nabla \cdot \left( S_{1}(u)\nabla z\right) +u\left( \alpha v-a_{1} -b_{1}u\right) ,&x \in \varOmega , t>0, \\&v_t=\nabla \cdot \left( D_{2}(v)\nabla v\right) +\xi \nabla \cdot \left( S_{2}(v)\nabla {w}\right) +v\left( a_{2} -b_{2} v-u\right) ,&x \in \varOmega , t>0, \\&{w_t}=\Delta w+\beta {u}-\gamma {w},&x \in \varOmega , t>0,\\&{z_t}=\Delta z+\delta {v}-\rho z,&x \in \varOmega , t>0,\\ \end{aligned} \right. \end{aligned} \end{aligned}$$

under homogeneous Neumann boundary conditions in a smoothly bounded domain \(\varOmega \subset \mathbb {R}^{n}(n\ge 1)\), where \( \chi , \xi , \alpha , \beta , \gamma , \delta , \rho , a_{1},a_{2},\) \(b_{1},b_{2}\) are positive parameters, the functions \(D_{i} \in C^{2}([0,\infty ))\) and \(S_{i}\in C^{2}([0,\infty ))\) with \(S_{i}(0)=0(i=1,2)\). Firstly, under certain suitable conditions, we prove that the system admits a unique globally bounded classical solution when \(n\le 4\). Moreover, we investigate the asymptotic stability and precise convergence rates of globally bounded solutions by constructing appropriate Lyapunov functionals. Finally, we present numerical simulations that not only support our theoretical results, but also involve new and interesting phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. B. Ainseba, M. Bendahmane, A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal-Real. 9(5) (2008) 2086–2105.

    MathSciNet  Google Scholar 

  2. I. Ahn, C. Yoon, Global solvability of prey-predator models with indirect predator-taxis, Z. Angew. Math. Phys. 72(1) (2021) 1–20.

    MathSciNet  Google Scholar 

  3. I. Ahn, C. Yoon, Global well-posedness and stability analysis of prey-predator model with indirect prey-taxis, J. Differ. Equ. 268(8) (2020) 4222–4255.

    MathSciNet  Google Scholar 

  4. X. Bai, M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana. Univ. Math. J. 65 (2016) 553–583.

    MathSciNet  Google Scholar 

  5. M. Chen, Q. Zheng, Predator-taxis creates spatial pattern of a predator-prey model, Chaos Soliton. Fract. 161 (2022) 112332.

    MathSciNet  Google Scholar 

  6. Y. Chiyo, T. Yokota, Boundedness and finite-time blow-up in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system, Z. Angew. Math. Phys. 73 (2022) 61.

    MathSciNet  Google Scholar 

  7. C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst. Ser. A 34 (2014) 1701–1745.

    MathSciNet  Google Scholar 

  8. W. Cummings, P. Thompson, Gray whales, eschrichtius robustus, avoid the underwater sounds of killer whales, orcinus orca, Fish. Bull. 69(3) (1971) 525–530.

    Google Scholar 

  9. C. Curé, R. Antunes, A. Alves, F.Visser, P.Kvadsheim, P. Miller, Responses of male sperm whales (physeter macrocephalus) to killer whale sounds: implications for anti-predator strategies, Sci. Rep. 3(1) (2013) 1–7.

    Google Scholar 

  10. M. Flowers, B. Graves, Juvenile toads avoid chemical cues from snake predators, Anim. Behav. 53(3) (1997) 641–646.

    Google Scholar 

  11. M. Fuest, Global solutions near homogeneous steady states in a multidimensional population model with both predator-and prey-taxis, SIAM. J. Math. Anal. 52(6) (2020) 5865–5891.

    MathSciNet  Google Scholar 

  12. D. Haroske, H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations, European Mathematical Society, Zurich, 2008.

    Google Scholar 

  13. X. He, S. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis. Appl. Math. Lett. 49 (2015) 73–77.

    MathSciNet  Google Scholar 

  14. M. Hirata, S. Kurima, M. Mizukami, T. Yokota, Boundedness and stabilization in a two-dimensional two-species chemotaxis-Navier-Stokes system with competitive kinetics, J. Differ. Equ. 263(1) (2017) 470–490.

    MathSciNet  Google Scholar 

  15. R. Hu, P. Zheng, On a quasilinear fully parabolic attraction or repulsion chemotaxis system with nonlinear signal production, Discrete Contin. Dyn. Syst. Ser. B 12 (2022) 7227–7244.

    MathSciNet  Google Scholar 

  16. R. Hu, P. Zheng, Global stability in a two-species attraction-repulsion system with competitive and nonlocal kinetics, J. Dyn. Differ. Equ. https://doi.org/10.1007/s10884-022-10215-5.

  17. H.Y. Jin, Z.A. Wang, Global stability of prey-taxis systems, J. Differ. Equ. 262(3) (2017) 1257–1290.

    MathSciNet  Google Scholar 

  18. H.Y. Jin, Z.A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, European J. Appl. Math. 32 (2021) 652–682.

    MathSciNet  Google Scholar 

  19. P. Kareiva, G. Odell, Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search, Am. Nat. 130(2) (1987) 233–270.

  20. C. Liu, B. Liu, Boundedness and asymptotic behavior in a predator-prey model with indirect pursuit-evasion interaction, Discrete Contin. Dyn. Syst. Ser. B 27(9) (2022) 4855–4874.

    MathSciNet  Google Scholar 

  21. Y. Luo, Global existence and stability of the classical solution to a density-dependent prey-predator model with indirect prey-taxis, Math. Biosci. Eng. 18(5) (2021) 6672–6699.

    MathSciNet  Google Scholar 

  22. N. Mizoguchi, P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. I. H. Poincare-An. 31 (4) (2014) 851–875.

    MathSciNet  Google Scholar 

  23. L. Nirenberg, An extended interpolation inequality, Ann. Sc. Norm. Super. Pisa. Cl. Sci. 20 (1966) 733–737.

    MathSciNet  Google Scholar 

  24. D. Qi, Y. Ke, Large time behavior in a predator-prey system with pursuit-evasion interaction, Discrete Contin. Dyn. Syst. Ser. B 27 (2022) 4531–4549.

    MathSciNet  Google Scholar 

  25. S. Qiu, C. Mu, H. Yi, Boundedness and asymptotic stability in a predator-prey chemotaxis system with indirect pursuit-evasion dynamics, Acta. Math. Sci. 42(3) (2022) 1035–1057.

    MathSciNet  Google Scholar 

  26. G. Ren, B. Liu, Global existence and convergence to steady states for a predator-prey model with both predator-and prey-taxis, Discrete Contin. Dyn. Syst. Ser. A 42(2) (2022) 759–779.

    MathSciNet  Google Scholar 

  27. C. Stinner, C. Surulescu, M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM. J. Math. Anal. 46(3) (2014) 1969–2007.

    MathSciNet  Google Scholar 

  28. C. Stinner, J. Tello, M. Winkler, Competitive exclusion in a two-species chemotaxis model, J. Math. Biol. 68(7) (2014) 1607–1626.

    MathSciNet  Google Scholar 

  29. X. Tao, S. Zhou, M. Ding, Boundedness of solutions to a quasilinear parabolic-parabolic chemotaxis model with nonlinear signal production, J. Math. Anal. Appl. 474 (2019) 733–747.

    MathSciNet  Google Scholar 

  30. Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis. Nonlinear Anal-Real. 11 (2010) 2056–2064.

    MathSciNet  Google Scholar 

  31. Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ. 252 (2012) 692–715.

    MathSciNet  Google Scholar 

  32. Y. Tao, M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equ. 252(3) (2012) 2520–2543.

    MathSciNet  Google Scholar 

  33. Y. Tao, M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B 20(9) (2015) 3165–3183.

  34. Y. Tao, M. Winkler, Analysis of a chemotaxis-SIS epidemic model with unbounded infection force, Nonlinear Anal-Real. 71 (2023) 103820.

    MathSciNet  Google Scholar 

  35. Y. Tao, M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys. 66(5) (2015) 2555–2573.

    MathSciNet  Google Scholar 

  36. Y. Tao, M. Winkler, Existence theory and qualitative analysis for a fully cross-diffusive predator-prey system, SIAM. J. Math. Anal. 54(4) (2022) 4806–4864.

    MathSciNet  Google Scholar 

  37. Y. Tao, M. Winkler, A fully cross-diffusive two-component evolution system: Existence and qualitative analysis via entropy-consistent thin-film-type approximation, J. Funct. Anal. 281(4) (2021) 109069.

    MathSciNet  Google Scholar 

  38. B. Telch, Global boundedness in a chemotaxis quasilinear parabolic predator-prey system with pursuit-evasion, Nonlinear Anal-Real. 59 (2021) 103269.

    MathSciNet  Google Scholar 

  39. J. Tello, D. Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Mod. Meth. Appl. Sci. 26 (2016) 2129–2162.

    MathSciNet  Google Scholar 

  40. X. Tu, C. Mu, P. Zheng, K. Lin, Global dynamics in a two-species chemotaxis-competition system with two signals. Discrete Contin. Dyn. Syst. Ser. A 38(7) (2018) 3617–3636.

    MathSciNet  Google Scholar 

  41. C. Wan, P. Zheng, W, Shan, Global stability of a quasilinear predator-prey model with indirect pursuit-evasion interaction, Int. J. Biomath. 2350076 (2023).

  42. J. Wang, M. Wang, Global solvability of a predator-prey model with predator-taxis and prey-taxis, arXiv:2108.00579, 2021.

  43. M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities? J. Nonlinear Sci. 24 (2014) 809–855.

    MathSciNet  Google Scholar 

  44. M. Winkler, Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems, Discrete Contin. Dyn. Syst. Ser. B 22(7) (2017) 2777–2793.

    MathSciNet  Google Scholar 

  45. M. Winkler, K. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal-Theor. 72 (2) (2010) 1044–1064.

    MathSciNet  Google Scholar 

  46. M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Part. Diff. Equ. 35(8) (2010) 1516–1537.

    MathSciNet  Google Scholar 

  47. D. Wrzosek, P. Mishra, Pursuit-evasion dynamics for Bazykin-type predator-prey model with indirect predator taxis, J. Differ. Equ. 361 (2023) 391–416.

    MathSciNet  Google Scholar 

  48. S. Wu, Global boundedness of a diffusive prey-predator model with indirect prey-taxis and predator-taxis, J. Math. Anal. Appl. 507(2) (2022) 125820.

    MathSciNet  Google Scholar 

  49. S. Wu, W. Ni, Boundedness and global stability of a diffusive prey-predator model with prey-taxis, Appl. Anal. 100(15) (2021) 3259–3275.

    MathSciNet  Google Scholar 

  50. S. Wu, J. Wang, J. Shi, Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Method. Appl. Sci. 28(11) (2018) 2275–2312.

    MathSciNet  Google Scholar 

  51. J. Xing, P. Zheng, X. Pan, A quasilinear predator-prey model with indirect prey-taxis, Qual. Theor. Dyn. Syst. 20(3) (2021) 70.

    MathSciNet  Google Scholar 

  52. J. Zheng, X. Liu, P. Zhang, Existence and boundedness of solutions for a parabolic-elliptic predator-prey chemotaxis system, Discrete Contin. Dyn. Syst. Ser. B 28(11) (2023) 5437–5446.

    MathSciNet  Google Scholar 

  53. P. Zheng, On a two-species competitive predator-prey system with density-dependent diffusion, Math. Biosci. Eng. 19(12) (2022) 13421–13457.

    MathSciNet  Google Scholar 

  54. P. Zheng, Boundedness and global stability in a three-species predator-prey system with prey-taxis, Discrete Contin. Dyn. Syst. Ser. B 28(2023) 4780–4799.

    MathSciNet  Google Scholar 

  55. P. Zheng, Asymptotic stability in a chemotaxis-competition system with indirect signal production, Discrete Contin. Dyn. Syst. Ser. A 41(3) (2021) 1207–1223.

    MathSciNet  Google Scholar 

  56. P. Zheng, R. Hu, W. Shan, On a two-species attraction-repulsion chemotaxis system with nonlocal terms, J. Nonlinear Sci. 33(4) (2023), Paper No. 57, 62 pp.

  57. P. Zheng, C. Mu, X. Hu, Y. Tian, Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source, J. Math. Anal. Appl. 424 (2015) 509–522.

    MathSciNet  Google Scholar 

  58. P. Zheng, W. Shan, Global boundedness and stability analysis of the quasilinear immune chemotaxis system, J. Differ. Equ. 344 (2023) 556–607.

    MathSciNet  Google Scholar 

  59. P. Zheng, W. Shan, G. Liao, Stability analysis of the immune system induced by chemotaxis, SIAM J. Appl. Dyn. Syst. 22(3) (2023) 2527–2569.

    MathSciNet  Google Scholar 

  60. P. Zheng, Y. Xiang, J. Xing, On a two-species chemotaxis system with indirect signal production and general competition terms, Math. Models Methods Appl. Sci. 32(7) (2022) 1385–1430.

    MathSciNet  Google Scholar 

  61. W. Zuo, Y. Song, Stability and double-Hopf bifurcations of a Gause-Kolmogorov-type predator-prey system with indirect prey-taxis, J. Dyn. Differ. Equ. 33(4) (2021) 1917–1957.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to deeply thank the editor and anonymous reviewers for their insightful and constructive comments. Pan Zheng is deeply grateful to Professor Renjun Duan for his support and help at CUHK.

Funding

The work is partially supported by National Natural Science Foundation of China (Grant Nos: 11601053, 12271064), the Science and Technology Research Project of Chongqing Municipal Education Commission (Grant No: KJZD-K202200602), Natural Science Foundation of Chongqing (Grant No: CSTB2023NSCQ-MSX0099), The Hong Kong Scholars Program (Grant Nos: XJ2021042, 2021-005) and Young Hundred Talents Program of CQUPT in 2022–2024.

Author information

Authors and Affiliations

Authors

Contributions

Chuanjia Wan, Pan Zheng, Wenhai Shan: Writing, Editing and Revising.

Corresponding author

Correspondence to Pan Zheng.

Ethics declarations

Conflict of interest

The authors declare that this work does not have any conflicts of interests.

Ethical Approval

The authors declare that this work is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, C., Zheng, P. & Shan, W. On a quasilinear fully parabolic predator–prey model with indirect pursuit-evasion interaction. J. Evol. Equ. 23, 78 (2023). https://doi.org/10.1007/s00028-023-00931-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-023-00931-w

Keywords

Mathematics Subject Classification

Navigation