Skip to main content
Log in

Synthesis, Characterization, Molecular Docking, and in Vitro Antidiabetic Activity Studies of New and Highly Selective Methoxy-Substituted Benzimidazole

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The benzimidazole-based new therapeutic agent has been efficiently synthesized using one pot condensation-cyclization reaction method involving 1,2-phenylenediamine, and benzaldehyde under mild condition and characterized by different analytical tools such as NMR, Mass, and FTIR spectroscopy. This compound has employed a protein inhibition assay for the in vitro antidiabetic and anti-inflammation activity. The obtained data are compared with standard drug molecules. This activity has been correlated with molecular docking studies with three protein molecules for diabetes and inflammations. The structure of the compound was confirmed by the single-crystal XRD method. In addition, the theoretical method is also used as supporting data for its activity towards diabetic and inflammatory activity. The FMO, MEP, and Mulliken charge distribution have been made using DFT analysis, and various reactive parameters are calculated using HOMO and LUMO. The benzimidazole-based TBTPBI has experimented with antidiabetic and anti-inflammatory activity in vitro manner using protein inhibition and denature techniques. A perfect correlation was found between DFT and the biological screening of TBTPBI with less binding energies and higher inhibition constants values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. M. M. Heravi and V. Zadsirjan. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Adv., 2020, 10(72), 44247-44311. https://doi.org/10.1039/d0ra09198g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A. Kleeman, J. Engel, B. Kutscher, and D. Reichert. Pharmaceutical Substances, 3rd ed. Stuttgart/New York, Germany/USA: George Thieme, 1999.

  3. M. Gaba and C. Mohan. Development of drugs based on imidazole and benzimidazole bioactive heterocycles: Recent advances and future directions. Med. Chem. Res., 2016, 25(2), 173-210. https://doi.org/10.1007/s00044-015-1495-5

    Article  CAS  Google Scholar 

  4. S. S. Alghamdi, R. S. Suliman, K. Almutairi, K. Kahtani, and D. Aljatli. Imidazole as a promising medicinal scaffold: Current status and future direction. Drug Des., Dev. Ther., 2021, 15, 3289-3312. https://doi.org/10.2147/dddt.s307113

    Article  Google Scholar 

  5. H. Debus. Ueber die Einwirkung des Ammoniaks auf Glyoxal. Ann. Chem. Pharm., 1858, 107(2), 199-208. https://doi.org/10.1002/jlac.18581070209

    Article  Google Scholar 

  6. A. Verma, S. Joshi, and D. Singh. Imidazole: Having versatile biological activities. J. Chem., 2013, 2013, 1-12. https://doi.org/10.1155/2013/329412

    Article  CAS  Google Scholar 

  7. H. Singh and V. K. Kapoor. Medicinal and Pharmaceutical Chemistry. Delhi, India: Vallabh Prakashan, 2008, Vol. 2.

  8. Q. M. Aliyeva, M. N. Tahir, M. Ashfaq, K. S. Munawar, S. Y. Rahmanova, U. M. Hasanova, A. A. Rustamova, H. F. Mammadova, and E. M. Movsumov. Nickel(II) coordination polymer using pyrazine linkers and phthalate counter-anion: Synthesis, crystal structure, Hirshfeld surface and voids analysis. J. Struct. Chem., 2023, 64(6), 995-1006. https://doi.org/10.1134/s0022476623060045

    Article  CAS  Google Scholar 

  9. O. Simsek, M. Ashfaq, M. N. Tahir, S. Ozturk, and E. Agar. Synthesis and charaterizations of the Schiff base derived from 2-hydroxy-5-nitrobenzaldehyde alongwith Hirshfeld surface analysis and computational study. JStruct. Chem., 2023, 64(5), 942-953. https://doi.org/10.1134/s0022476623050128

    Article  CAS  Google Scholar 

  10. M. Kurbanova, M. Ashfaq, M. N. Tahir, A. Maharramov, N. Dege, N. Ramazanzade, and E. B. Cinar. Synthesis, crystal structure, supramolecular assembly inspection by hirshfeld surface analysis and computational exploration of 4-phenyl-6-(p-tolyl)pyrimidin-2(1H)-one (PPTP). J. Struct. Chem., 2023, 64(3), 437-449. https://doi.org/10.1134/s0022476623030095

    Article  CAS  Google Scholar 

  11. M. Kurbanova, M. Ashfaq, M. N. Tahir, A. Maharramov, N. Dege, and A. Koroglu. Synthesis, crystal structure, supramolecular assembly exploration by Hirshfeld surface analysis and computational study of 6-bromo-2-oxo-2H-chromene-3-carbonitrile (BOCC). J. Struct. Chem., 2023, 64(2), 302-313. https://doi.org/10.1134/s0022476623020142

    Article  CAS  Google Scholar 

  12. A. S. Faihan, R. H. AlShammari, M. Ashfaq, and S. Muhammad. Synthesis, spectroscopic, crystallographic, quantum and molecular docking investigations of cis-4,5-diphenylimidazolidine-2-thione. J. Mol. Struct., 2023, 1286, 135633. https://doi.org/10.1016/j.molstruc.2023.135633

    Article  CAS  Google Scholar 

  13. A. Ali, M. Ashfaq, Z. U. Din, and M. Ibrahim. Synthesis, structural, and intriguing electronic properties of symmetrical bis-aryl-α,β-unsaturated ketone derivatives. ACS Omega, 2022, 7(43), 39294. https://doi.org/10.1021/acsomega.2c05441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. B. R. Smith, C. M. Eastman, and J. T. Njardarson. Beyond C, H, O, and N! Analysis of the elemental composition of U.S. FDA approved drug architectures. J. Med. Chem., 2014, 57(23), 9764-9773. https://doi.org/10.1021/jm501105n

    Article  CAS  PubMed  Google Scholar 

  15. C. Sherer and T. J. Snape. Heterocyclic scaffolds as promising anticancer agents against tumours of the central nervous system: Exploring the scope of indole and carbazole derivatives. Eur. J. Med. Chem., 2015, 97, 552-560. https://doi.org/10.1016/j.ejmech.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  16. N. Kerru, L. Gummidi, S. Maddila, K. K. Gangu, and S. B. Jonnalagadda. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909. https://doi.org/10.3390/molecules25081909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. Gaba and C. Mohan. Development of drugs based on imidazole and benzimidazole bioactive heterocycles: Recent advances and future directions. Med. Chem. Res., 2016, 25(2), 173-210. https://doi.org/10.1007/s00044-015-1495-5

    Article  CAS  Google Scholar 

  18. A. Abdullah, A. Peeters, M. de Courten, and J. Stoelwinder. The magnitude of association between overweight and obesity and the risk of diabetes: A meta-analysis of prospective cohort studies. Diabetes Res. Clin. Pract., 2010, 89(3), 309-319. https://doi.org/10.1016/j.diabres.2010.04.012

    Article  PubMed  Google Scholar 

  19. Definition, diagnosis and classification of diabetes mellitus and its complications: Report of a WHO consultation. Geneva, Switzerland: World Health Organization, 1999.

  20. S. Pottathil, P. Nain, M. A. Morsy, J. Kaur, B. E. Al-Dhubiab, S. Jaiswal, and A. B. Nair. Mechanisms of antidiabetic activity of methanolic extract of Punica granatum leaves in nicotinamide/streptozotocin-induced type 2 diabetes in rats. Plants, 2020, 9(11), 1609. https://doi.org/10.3390/plants9111609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. Olefsky and J. Nolan. Insulin resistance and non-insulin-dependent diabetes mellitus: cellular and molecular mechanisms. Am. J. Clin. Nutr., 1995, 61(4), 980S-986S. https://doi.org/10.1093/ajcn/61.4.980s

    Article  CAS  PubMed  Google Scholar 

  22. D. Mohan, D. Raj, C. S. Shanthirani, M. Datta, N. C. Unwin, A. Kapur, and V. Mohan. Awareness and knowledge of diabetes in Chennai - the Chennai urban rural epidemiology study [CURES-9]. J. Assoc. Physicians India, 2005, 53(4), 283-287.

  23. C. M. Ripsin, H. Kang, and R. J. Urban. Management of blood glucose in type 2 diabetes mellitus. Am. Fam. Physician, 2009, 79(1), 29-36.

  24. R. J. Ligthelm, M. Kaiser, J. Vora, and J.-F. Yale. Insulin use in elderly adults: Risk of hypoglycemia and strategies for care. J. Am. Geriatr. Soc., 2012, 60(8), 1564-1570. https://doi.org/10.1111/j.1532-5415.2012.04055.x

    Article  Google Scholar 

  25. S. B. Patchipala, V. R. Pasupuleti, A. V Audipudi, and H. babu Bollikolla. Synthesis, in-vivo anti-diabetic & anticancer activities and molecular modelling studies of tetrahydrobenzo[d]thiazole tethered nicotinohydrazide derivatives. Arab. J. Chem., 2022, 15(2), 103546. https://doi.org/10.1016/j.arabjc.2021.103546

    Article  CAS  Google Scholar 

  26. M. D. Ferrer, C. Busquets-Cortés, X. Capó, S. Tejada, J. A. Tur, A. Pons, and A. Sureda. Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases. Curr. Med. Chem., 2019, 26(18), 3225-3241. https://doi.org/10.2174/0929867325666180514112124

    Article  CAS  Google Scholar 

  27. R. Aggarwal, G. Singh, P. Kaushik, D. Kaushik, D. Paliwal, and A. Kumar. Molecular docking design and one-pot expeditious synthesis of novel 2,5-diarylpyrazolo[1,5-a]pyrimidin-7-amines as anti-inflammatory agents. Eur. J. Med. Chem., 2015, 101, 326-333. https://doi.org/10.1016/j.ejmech.2015.06.011

    Article  CAS  PubMed  Google Scholar 

  28. S. Shenvi, K. R. Kiran, K. Kumar, L. Diwakar, and G. C. Reddy. Synthesis and biological evaluation of boswellic acid-NSAID hybrid molecules as anti-inflammatory and anti-arthritic agents. Eur. J. Med. Chem., 2015, 98, 170-178. https://doi.org/10.1016/j.ejmech.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  29. K. L. Chan, F. Cathomas, and S. J. Russo. Central and peripheral inflammation link metabolic syndrome and major depressive disorder. Physiology, 2019, 34(2), 123-133. https://doi.org/10.1152/physiol.00047.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. R. Nithyabalaji, H. Krishnan, J. Subha, and R. Sribalan. Synthesis, molecular structure, in vitro and in silico studies of 4-phenylmorpholine-heterocyclic amides. J. Mol. Struct., 2020, 1204, 127563. https://doi.org/10.1016/j.molstruc.2019.127563

    Article  CAS  Google Scholar 

  31. A. Yousefi, R. Yousefi, F. Panahi, S. Sarikhani, A. R. Zolghadr, A. Bahaoddini, and A. Khalafi-Nezhad. Novel curcumin-based pyrano[2,3-d]pyrimidine anti-oxidant inhibitors for α-amylase and α-glucosidase: Implications for their pleiotropic effects against diabetes complications. Int. J. Biol. Macromol., 2015, 78, 46-55. https://doi.org/10.1016/j.ijbiomac.2015.03.060

    Article  CAS  PubMed  Google Scholar 

  32. R. Sribalan, G. Banuppriya, M. Kirubavathi, A. Jayachitra, and V. Padmini. Multiple biological activities and molecular docking studies of newly synthesized 3-(pyridin-4-yl)-1H-pyrazole-5-carboxamide chalcone hybrids. Bioorg. Med. Chem. Lett., 2016, 26(23), 5624-5630. https://doi.org/10.1016/j.bmcl.2016.10.075

    Article  CAS  Google Scholar 

  33. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  34. G. M. Sheldrick. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64(1), 112-122. https://doi.org/10.1107/s0108767307043930

    Article  Google Scholar 

  35. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  36. G. M. Sheldrick. SHELXL-2018. Göttingen, Germany: University of Göttingen, 2018.

  37. L. J. Farrugia. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr., 2012, 45(4), 849-854. https://doi.org/10.1107/s0021889812029111

    Article  CAS  Google Scholar 

  38. A. Senthil Murugan, M. Kiruthika, E. R. Abel Noelson, P. Yogapandi, G. Gnana Kumar, and J. Annaraj. Fluorescent sensor for in-vivo bio-imaging, precise tracking of Fe3+ ions in Zebrafish embryos and visual measuring of Cu2+ ions in pico-molar level. Arab. J. Chem., 2021, 14(1), 102910. https://doi.org/10.1016/j.arabjc.2020.11.016

    Article  CAS  Google Scholar 

  39. B. E. Hammer. Industrial applications of nuclear magnetic resonance. Sens. Rev., 1998, 18(4), 245-251. https://doi.org/10.1108/02602289810240637

    Article  Google Scholar 

  40. A. Senthil Murugan, N. Vidhyalakshmi, U. Ramesh, and J. Annaraj. A Schiff’s base receptor for red fluorescence live cell imaging of Zn2+ ions in zebrafish embryos and naked eye detection of Ni2+ ions for bio-analytical applications. J. Mater. Chem. B, 2017, 5(17), 3195-3200. https://doi.org/10.1039/c7tb00011a

    Article  CAS  PubMed  Google Scholar 

  41. R. A. Haque, M. A. Iqbal, M. B. Khadeer Ahamed, A. A. Majid, and Z. A. Abdul Hameed. Design, synthesis and structural studies of meta-xylyl linked bis-benzimidazolium salts: Potential anticancer agents against ′human colon cancer′. Chem. Cent. J., 2012, 6(1), 68. https://doi.org/10.1186/1752-153x-6-68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. S. Jayaraman, R. A. Castillo Guel, K. Malek, and K. Arumugam. Di-μ-acetato-bis{[3-benzyl-1-(2,4,6-trimethylphenyl)imidazol-2-ylidene]silver(I)}. IUCrData, 2019, 4(7), x191003. https://doi.org/10.1107/s2414314619010034

    Article  CAS  Google Scholar 

  43. S. Pandey, P. Tripathi, P. Parashar, V. Maurya, M. Z. Malik, R. Singh, P. Yadav, and V. Tandon. Synthesis and biological evaluation of novel 1H-benzo[d]imidazole derivatives as potential anticancer agents targeting human topoisomerase I. ACS Omega, 2022, 7(3), 2861-2880. https://doi.org/10.1021/acsomega.1c05743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. H. Saral, Ö. Özdamar, and İ. Uçar. Synthesis, structural and spectroscopic studies of two new benzimidazole derivatives: A comparative study. J. Mol. Struct., 2017, 1130, 46-54. https://doi.org/10.1016/j.molstruc.2016.10.013

    Article  CAS  Google Scholar 

  45. S. M. Arumugam, D. Singh, S. Mahala, B. Devi, S. Kumar, S. Jakhu, and S. Elumalai. MgO/CaO nanocomposite facilitates economical production of D-fructose and D-allulose using glucose and its response prediction using a DNN model. Ind. Eng. Chem. Res., 2022, 61(6), 2524-2537. https://doi.org/10.1021/acs.iecr.1c04631

    Article  CAS  Google Scholar 

  46. L. Chen, H. Deng, H. Cui, J. Fang, Z. Zuo, J. Deng, Y. Li, X. Wang, and L. Zhao. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018, 9(6), 7204-7218. https://doi.org/10.18632/oncotarget.23208

    Article  PubMed  PubMed Central  Google Scholar 

  47. B. Misiak, M. Wójta-Kempa, J. Samochowiec, C. Schiweck, M. Aichholzer, A. Reif, A. Samochowiec, and B. Stańczykiewicz. Peripheral blood inflammatory markers in patients with attention deficit/hyperactivity disorder (ADHD): A systematic review and meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2022, 118, 110581. https://doi.org/10.1016/j.pnpbp.2022.110581

    Article  CAS  PubMed  Google Scholar 

  48. D. Anand, G. D. Colpo, G. Zeni, C. P. Zeni, and A. L. Teixeira. Attention-deficit/hyperactivity disorder and inflamemation: What does current knowledge tell us? A systematic review. Front. Psychiatry, 2017, 8. https://doi.org/10.3389/fpsyt.2017.00228

    Article  PubMed  PubMed Central  Google Scholar 

  49. S. Premkumar, T. N. Rekha, R. Mohamed Asath, T. Mathavan, and A. Milton Franklin Benial. Vibrational spectroscopic, molecular docking and density functional theory studies on 2-acetylamino-5-bromo-6-methylpyridine. Eur. J. Pharm. Sci., 2016, 82, 115-125. https://doi.org/10.1016/j.ejps.2015.11.018

    Article  CAS  PubMed  Google Scholar 

  50. N. Kerru, L. Gummidi, S. V. H. S. Bhaskaruni, S. N. Maddila, P. Singh, and S. B. Jonnalagadda. A comparison between observed and DFT calculations on structure of 5-(4-chlorophenyl)-2-amino-1,3,4-thiadiazole. Sci. Rep., 2019, 9(1), 19280. https://doi.org/10.1038/s41598-019-55793-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. S. Kumar, S. M. Arumugam, S. Sharma, S. Mahala, B. Devi, and S. Elumalai. Insights into the kinetics and mechanism of spermine (base)-catalyzed D-fructose interconversion to low-calorie D-allulose. Mol. Catal., 2022, 533, 112757. https://doi.org/10.1016/j.mcat.2022.112757

    Article  CAS  Google Scholar 

  52. A. Senthil Murugan, E. R. Abel Noelson, and J. Annaraj. Solvent dependent colorimetric, ratiometric dual sensor for copper and fluoride ions: Real sample analysis, cytotoxicity and computational studies. Inorg. Chim. Acta, 2016, 450, 131-139. https://doi.org/10.1016/j.ica.2016.04.022

    Article  CAS  Google Scholar 

  53. S. S. Nishat, M. J. Hossain, F. E. Mullick, A. Kabir, S. Chowdhury, S. Islam, and M. Hossain. Performance analysis of perovskite solar cells using DFT-extracted parameters of metal-doped TiO2 electron transport layer. JPhys. Chem. C, 2021, 125(24), 13158-13166. https://doi.org/10.1021/acs.jpcc.1c02302

    Article  CAS  Google Scholar 

  54. S. Sakkiah, C. Meganathan, Y.-S. Sohn, S. Namadevan, and K. W. Lee. Identification of important chemical features of 11β-hydroxysteroid dehydrogenase type1 inhibitors: Application of ligand based virtual screening and density functional theory. Int. J. Mol. Sci., 2012, 13(4), 5138-5162. https://doi.org/10.3390/ijms13045138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. C. H. Suresh, G. S. Remya, and P. K. Anjalikrishna. Molecular electrostatic potential analysis: A powerful tool to interpret and predict chemical reactivity. WIREs Comput. Mol. Sci., 2022, 12(5). https://doi.org/10.1002/wcms.1601

    Article  Google Scholar 

  56. S. Lakshminarayanan, V. Jeyasingh, K. Murugesan, N. Selvapalam, and G. Dass. Molecular electrostatic potential (MEP) surface analysis of chemo sensors: An extra supporting hand for strength, selectivity & non-traditional interactions. J. Photochem. Photobiol., 2021, 6, 100022. https://doi.org/10.1016/j.jpap.2021.100022

    Article  Google Scholar 

  57. R. S. Mulliken. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys., 1955, 23(10), 1833-1840. https://doi.org/10.1063/1.1740588

    Article  CAS  Google Scholar 

Download references

Funding

The corresponding author JK sincerely acknowledges the DST-SERB for providing a research project of SB/FT/CS-020/2014 under the young scientist scheme (fast track). The authors thank SRM Institute of Science and Technology for providing a ass and NMR spectroscopy facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Krishnamurthi.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 11, 117716.https://doi.org/10.26902/JSC_id117716

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athimoolam, T., Devaraj Stephen, L., Gunasekaran, B. et al. Synthesis, Characterization, Molecular Docking, and in Vitro Antidiabetic Activity Studies of New and Highly Selective Methoxy-Substituted Benzimidazole. J Struct Chem 64, 2063–2081 (2023). https://doi.org/10.1134/S0022476623110045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623110045

Keywords

Navigation