Skip to main content
Log in

Nrf2 activator Diethyl Maleate attenuates ROS mediated NLRP3 inflammasome activation in murine microglia

  • Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Microglia are the tissue-resident immune cells of the central nervous system. As a part of the innate immune response, NLR Family Pyrin Domain Containing Protein 3 (NLRP3) inflammasome activation leads to cleavage of caspase-1 and triggers secretion of proinflammatory cytokines and may also result in pyroptotic cell death. Inflammasome activation plays a crucial role in inflammatory conditions; aberrant activation of inflammasome contributes to the pathogenesis of neurodegenerative diseases. Diethyl Maleate (DEM) is a promising antiinflammatory chemical to alleviate inflammasome activation. In this study, NLRP3 inflammasome was activated in N9 murine microglia via 1 µg/ml LPS (Lipopolysaccharide) for 4 h and 5 mM ATP (Adenosine 5′-triphosphate) for 1 h, respectively. We demonstrated that 1 h pretreatment of DEM attenuated NLRP3 inflammasome activation in microglial cells. Besides, mitochondrial ROS decreased upon DEM pretreatment in inflammasome-induced cells. Likewise, it ameliorated pyroptotic cell death in microglia. DEM is a potent activator of Nrf2 transcription factor, the key regulator of the antioxidant response pathway. Nrf2 has been a significant target to decrease aberrant inflammasome activation through the antioxidant compounds, including DEM. Here, we have shown that DEM increased Nrf2 translocation to the nucleus, resulting in Nrf2 target gene expression in microglia. In conclusion, DEM is a promising protective agent against NLRP3 inflammasome activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ARE:

Antioxidant response element

ATP:

Adenosine 5′-triphosphate

ASC:

Apoptosis-associated speck-like protein containing a CARD

bZIP:

Basic-region leucine zipper

CNC:

Cap “n” collar

CNS:

Central nervous system

DEM:

Diethyl Maleate

Gclc:

Glutamate cysteine ligase catalytic subunit

Gclm:

Glutamate cysteine ligase regulatory subunit

HO-1:

Heme oxygenase-1

Keap1:

Kelch-like ECH-associated protein 1

LPS:

Lipopolysaccharide

NF-κB:

Nuclear factor-κB

NLRP3:

NLR family pyrin domain containing protein 3

Nqo1:

NAD(P)H:quinone oxidoreductase 1

Nrf2:

Nuclear factor-erythroid-2-related factor 2

PRR:

Pattern recognition receptor

ROS:

Reactive oxygen species

References

  • Ahmed SM, Luo L, Namani A, Wang XJ (1863) Tang X (2017) Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis 2:585–597

    Google Scholar 

  • Cuadrado A, Martin-Moldes Z, Ye J, Lastres-Becker I (2014) Transcription factors NRF2 and NF-kappaB are coordinated effectors of the rho family, GTP-binding protein RAC1 during inflammation. J Biol Chem 289:15244–15258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubbelaar ML, Kracht L, Eggen BJL, Boddeke E (2018) The kaleidoscope of microglial phenotypes. Front Immunol 9:1753

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo H, Callaway JB, Ting JP (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21:677–687

    Article  PubMed  PubMed Central  Google Scholar 

  • Haque ME, Akther M, Jakaria M, Kim IS, Azam S, Choi DK (2020) Targeting the microglial NLRP3 inflammasome and its role in Parkinson’s disease. Mov Disord 35:20–33

    Article  CAS  PubMed  Google Scholar 

  • Harada N, Kanayama M, Maruyama A, Yoshida A, Tazumi K, Hosoya T, Mimura J, Toki T, Maher JM, Yamamoto M, Itoh K (2011) Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages. Arch Biochem Biophys 508:101–109

    Article  CAS  PubMed  Google Scholar 

  • He Y, Hara H, Nunez G (2016) Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 41:1012–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hennig P, Garstkiewicz M, Grossi S, Di Filippo M, French LE, Beer HD (2018) The crosstalk between Nrf2 and inflammasomes. Int J Mol Sci 19:562

    Article  PubMed  PubMed Central  Google Scholar 

  • Holbrook JA, Jarosz-Griffiths HH, Caseley E, Lara-Reyna S, Poulter JA, Williams-Gray CH, Peckham D, McDermott MF (2021) Neurodegenerative disease and the NLRP3 inflammasome. Front Pharmacol 12:643254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275:16023–16029

    Article  CAS  PubMed  Google Scholar 

  • Iso T, Suzuki T, Baird L, Yamamoto M (2016) Absolute amounts and status of the Nrf2-Keap1-Cul3 complex within cells. Mol Cell Biol 36:3100–3112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo EK, Kim JK, Shin DM, Sasakawa C (2016) Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol 13:148–159

    Article  CAS  PubMed  Google Scholar 

  • Jones JJ, Fan J, Nathens AB, Kapus A, Shekhman M, Marshall JC, Parodo J, Rotstein OD (1999) Redox manipulation using the thiol-oxidizing agent diethyl maleate prevents hepatocellular necrosis and apoptosis in a rodent endotoxemia model. Hepatology 30:714–724

    Article  CAS  PubMed  Google Scholar 

  • Kang KW, Pak YM, Kim ND (1999) Diethylmaleate and buthionine sulfoximine, glutathione-depleting agents, differentially inhibit expression of inducible nitric oxide synthase in endotoxemic mice. Nitric Oxide 3:265–271

    Article  CAS  PubMed  Google Scholar 

  • Kano SI, Choi EY, Dohi E, Agarwal S, Chang DJ, Wilson AM, Lo BD, Rose IVL, Gonzalez S, Imai T, Sawa A (2019) Glutathione S-transferases promote proinflammatory astrocyte-microglia communication during brain inflammation. Sci Signal 12:2124

    Article  Google Scholar 

  • Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, Tanaka N, Moriguchi T, Motohashi H, Nakayama K, Yamamoto M (2016) Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 7:11624

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Krafczyk N, Klotz LO (2022) FOXO transcription factors in antioxidant defense. IUBMB Life 74:53–61

    Article  CAS  PubMed  Google Scholar 

  • Mamik MK, Power C (2017) Inflammasomes in neurological diseases: emerging pathogenic and therapeutic concepts. Brain 140:2273–2285

    Article  PubMed  Google Scholar 

  • Man SM, Kanneganti TD (2015) Regulation of inflammasome activation. Immunol Rev 265:6–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E (2018) Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov 17:588–606

    Article  CAS  PubMed  Google Scholar 

  • Nathens AB, Marshall JC, Watson RW, Dackiw AP, Rotstein OD (1996) Diethylmaleate attenuates endotoxin-induced lung injury. Surgery 120:360–366

    Article  CAS  PubMed  Google Scholar 

  • Prinz M, Jung S, Priller J (2019) Microglia biology: one century of evolving concepts. Cell 179:292–311

    Article  CAS  PubMed  Google Scholar 

  • Righi M, Mori L, De Libero G, Sironi M, Biondi A, Mantovani A, Donini SD, Ricciardi-Castagnoli P (1989) Monokine production by microglial cell clones. Eur J Immunol 19:1443–1448

    Article  CAS  PubMed  Google Scholar 

  • Robertson H, Dinkova-Kostova AT, Hayes JD (2020) NRF2 and the ambiguous consequences of its activation during initiation and the subsequent stages of tumourigenesis. Cancers (Basel) 12:3609

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Malovic E, Harishchandra DS, Ghaisas S, Panicker N, Charli A, Palanisamy BN, Rokad D, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG (2017) Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson’s disease. NPJ Parkinsons Dis 3:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Satoh T, Trudler D, Oh CK, Lipton SA (2022) Potential therapeutic use of the rosemary diterpene carnosic acid for Alzheimer’s disease, Parkinson’s disease, and long-COVID through NRF2 activation to counteract the NLRP3 inflammasome. Antioxidants. https://doi.org/10.3390/antiox11010124

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva-Islas CA, Maldonado PD (2018) Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol Res 134:92–99

    Article  CAS  PubMed  Google Scholar 

  • Song N, Li T (2018) Regulation of NLRP3 inflammasome by phosphorylation. Front Immunol 9:2305

    Article  PubMed  PubMed Central  Google Scholar 

  • Stansley B, Post J, Hensley K (2012) A comparative review of cell culture systems for the study of microglial biology in Alzheimer’s disease. J Neuroinflam 9:115

    Article  Google Scholar 

  • Swanson KV, Deng M, Ting JP (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19:477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taguchi K, Yamamoto M (2020) The KEAP1-NRF2 system as a molecular target of cancer treatment. Cancers. https://doi.org/10.3390/cancers13010046

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmerman R, Burm SM, Bajramovic JJ (2018) An overview of in vitro methods to study microglia. Front Cell Neurosci 12:242

    Article  PubMed  PubMed Central  Google Scholar 

  • Tonelli C, Chio IIC, Tuveson DA (2018) Transcriptional regul Nrf2. Antioxid Redox Signal 29:1727–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tufekci KU, Ercan I, Isci KB, Olcum M, Tastan B, Gonul CP, Genc K, Genc S (2021) Sulforaphane inhibits NLRP3 inflammasome activation in microglia through Nrf2-mediated miRNA alteration. Immunol Lett 233:20–30

    Article  CAS  PubMed  Google Scholar 

  • Ulasov AV, Rosenkranz AA, Georgiev GP, Sobolev AS (2022) Nrf2/Keap1/ARE signaling: towards specific regulation. Life Sci 291:120111

    Article  CAS  PubMed  Google Scholar 

  • Voet S, Srinivasan S, Lamkanfi M, van Loo G (2019) Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med 11:e10248

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu JW, Lee MS (2016) Mitochondria and the NLRP3 inflammasome: physiological and pathological relevance. Arch Pharm Res 39:1503–1518

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhao M, Wang B, Su Z, Guo B, Qin L, Zhang W, Zheng R (2021) The Nrf2-NLRP3-caspase-1 axis mediates the neuroprotective effects of celastrol in Parkinson’s disease. Redox Biol 47:102134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds or grants were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CK and CPG conceived the study, performed the experiments. CK analyzed and interpreted the data and wrote the manuscript. SG conceived the study, interpreted the data, and edited the manuscript.

Corresponding author

Correspondence to Sermin Genc.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiser, C., Gonul, C.P. & Genc, S. Nrf2 activator Diethyl Maleate attenuates ROS mediated NLRP3 inflammasome activation in murine microglia. Cytotechnology 76, 197–208 (2024). https://doi.org/10.1007/s10616-023-00609-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-023-00609-8

Keywords

Navigation