Skip to main content
Log in

Monte Carlo simulation of carbon dioxide adsorption on highly crystalline carbonaceous materials obtained by chemical synthesis

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

In this work we examine, using Monte Carlo simulations, the adsorption capacities and isosteric heats of adsorption of new crystalline materials that have been synthesized in the laboratory but not yet explored for carbon dioxide adsorption. These included carbon nanocones (CNC), twisted macrocycles (C68, C72), nanographenes (COR, COR-Cl), and rylene propellers (TPH, TPH-Se). The materials were characterized by argon adsorption isotherms, showing high specific surface areas between 958–2370 m2/g. CO2 adsorption capacities at 273 K and 1 bar ranged from 1.15\(-\)3.71 mmol/g. The twisted macrocycle C72 exhibited the highest micropore volume and consequently the greatest carbon dioxide adsorption at low pressures. TPH-Se displayed the highest capacity at 1 bar due to larger pores. Isosteric heats of adsorption were below 20 kJ/mol for all materials, lower than typical activated carbons. This study demonstrates the potential of crystalline carbons for selective CO2 capture and provides insight into relating structure and adsorption properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Jang, E., Choi, S.W., Hong, S.M., Shin, S., Lee, K.B.: Development of a cost-effective CO2 adsorbent from petroleum coke via KOH activation. Appl. Surf. Sci. 429, 62–71 (2018)

    Article  ADS  CAS  Google Scholar 

  2. Lee, S.Y., Park, S.J.: A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem. 23, 1–11 (2015)

    Article  Google Scholar 

  3. Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Dubash, N. K.: Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 151). Ipcc. (2014)

  4. Rashidi, N.A., Yusup, S.: An overview of activated carbons utilization for the post-combustion carbon dioxide capture. J. CO2 Util. 13, 1–16 (2016)

    Article  CAS  Google Scholar 

  5. Chiang, Y.C., Juang, R.S.: Surface modifications of carbonaceous materials for carbon dioxide adsorption: a review. J. Taiwan Inst. Chem. Eng. 71, 214–234 (2017)

    Article  CAS  Google Scholar 

  6. Wilk, A., et al.: Solvent selection for CO 2 capture from gases with high carbon dioxide concentration. Korean J. Chem. Eng. 34(8), 2275–2283 (2017)

    Article  CAS  Google Scholar 

  7. Ramli, N.A., Hashim, N.A., Aroua, M.K.: Supported ionic liquid membranes (SILMs) as a contactor for selective absorption of CO2/O2 by aqueous monoethanolamine (MEA). Sep. Purif. Technol. 230, 115849 (2020)

    Article  CAS  Google Scholar 

  8. Scholes, C.A., Ho, M.T., Wiley, D.E., Stevens, G.W., Kentish, S.E.: Cost competitive membrane-cryogenic post-combustion carbon capture. Int. J. Greenh. Gas Contr. 17, 341–348 (2013)

    Article  CAS  Google Scholar 

  9. Yu, C.H., Huang, C.H., Tan, C.S.: A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 12(5), 745–769 (2012)

    Article  CAS  Google Scholar 

  10. Ghanbari, T., Abnisa, F., Daud, W.M.A.W.: A review on production of metal organic frameworks (MOF) for CO2 adsorption. Sci. Total Environ. 707, 135090 (2020)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Kang, Y., Li, Z., Wang, Y., Chen, Y., Yang, X., Wen, A.: An intriguing N-oxide-functionalized 3D flexible microporous MOF exhibiting highly selectivity for CO2 with a gate effect. Polyhedron, 114593 (2020)

  12. Millward, A.R., Yaghi, O.M.: Metal organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127(51), 17998–17999 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Russell, B.A., Migone, A.D.: Low temperature adsorption study of CO2 in ZIF-8. Microporous Mesoporous Mater. 246, 178–185 (2017)

    Article  CAS  Google Scholar 

  14. Hudson, M.R., Queen, W.L., Mason, J.A., Fickel, D.W., Lobo, R.F., Brown, C.M.: Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. J. Am. Chem. Soc. 134(4), 1970–1973 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. Garshasbi, V., Jahangiri, M., Anbia, M.: Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays. Appl. Surf. Sci. 393, 225–233 (2017)

    Article  ADS  CAS  Google Scholar 

  16. Hiyoshi, N., Yogo, K., Yashima, T.: Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous Mesoporous Mater. 84(1–3), 357–365 (2005)

    Article  CAS  Google Scholar 

  17. Yamada, H., Chowdhury, F.A., Fujiki, J., Yogo, K.: Enhancement mechanism of the CO2 adsorption-desorption efficiency of silica-supported tetraethylenepentamine by chemical modification of amino groups. ACS Sustain. Chem. Eng. 7(10), 9574–9581 (2019)

    Article  CAS  Google Scholar 

  18. Li, D., Wang, Y., Zhang, X., Zhou, J., Yang, Y., Zhang, Z., Zhao, X.: Effects of compacting activated carbons on their volumetric CO2 adsorption performance. Fuel 262, 116540 (2020)

    Article  CAS  Google Scholar 

  19. Albesa, A.G., Rafti, M., Vicente, J.L., Sánchez, H., Húmpola, P.: Adsorption of CO2/CH4 mixtures in a molecular model of activated carbon through Monte Carlo simulations. Adsorpt. Sci. Technol. 30(8–9), 669–689 (2012)

    Article  CAS  Google Scholar 

  20. Singh, G., Lakhi, K.S., Sil, S., Bhosale, S.V., Kim, I., Albahily, K., Vinu, A.: Biomass derived porous carbon for CO2 capture. Carbon 148, 164–186 (2019)

    Article  CAS  Google Scholar 

  21. Xiong, L., Wang, X.F., Li, L., Jin, L., Zhang, Y.G., Song, S.L., Liu, R.P.: Nitrogen-Enriched Porous Carbon Fiber as a CO2 Adsorbent with Superior CO2 Selectivity by Air Activation. Energy Fuels 33(12), 12558–12567 (2019)

    Article  CAS  Google Scholar 

  22. Abdelmoaty, Y.H., Tessema, T.D., Norouzi, N., El-Kadri, O.M., Turner, J.B.M., El-Kaderi, H.M.: Effective approach for increasing the heteroatom doping levels of porous carbons for superior CO2 capture and separation performance. ACS Appl. Mater. Interfaces 9(41), 35802–35810 (2017)

    Article  CAS  PubMed  Google Scholar 

  23. Hermosilla, M.E.F., Chávez, N.A.P., Albesa, A.G.: Monte Carlo simulations of n-butane and n-octane adsorbed onto graphite and a molecular model of activated carbon. Adsorption 25(7), 1419–1424 (2019)

    Article  CAS  Google Scholar 

  24. Shoyama, K., Würthner, F.: Synthesis of a carbon nanocone by cascade annulation. J. Am. Chem. Soc. 141(33), 13008–13012 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. Li, Y., Yagi, A., Itami, K.: Synthesis of highly twisted, nonplanar aromatic macrocycles enabled by an axially chiral 4, 5-diphenylphenanthrene building block. J. Am. Chem. Soc. 142(6), 3246–3253 (2020)

    Article  CAS  PubMed  Google Scholar 

  26. Fernandez-Garcia, J.M., Evans, P.J., Medina Rivero, S., Fernández, I., García-Fresnadillo, D., Perles, J., Martín, N.: π-extended corannulene-based nanographenes: selective formation of negative curvature. J. Am. Chem. Soc. 140(49), 17188–17196 (2018)

    Article  CAS  PubMed  Google Scholar 

  27. Meng, D., Fu, H., Xiao, C., Meng, X., Winands, T., Ma, W., Li, Y.: Three-bladed rylene propellers with three-dimensional network assembly for organic electronics. J. Am. Chem. So. 138(32), 10184–10190 (2016)

    Article  CAS  Google Scholar 

  28. Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F., Takahashi, K.: Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett. 309(3–4), 165–170 (1999)

    Article  ADS  CAS  Google Scholar 

  29. Azami, T., Kasuya, D., Yuge, R., Yudasaka, M., Iijima, S., Yoshitake, T., Kubo, Y.: Large-scale production of single-wall carbon nanohorns with high purity. J. Phys. Chem. C 112(5), 1330–1334 (2008)

    Article  CAS  Google Scholar 

  30. Babu, D.J., Herdt, T., Okeil, S., Bruns, M., Staudt, R., Schneider, J.J.: Bud type carbon nanohorns: materials for high pressure CO 2 capture and Li-ion storage. J. Materi. Chem. A 4(37), 14267–14275 (2016)

    Article  CAS  Google Scholar 

  31. Krungleviciute, V., Ziegler, C.A., Banjara, S.R., Yudasaka, M., Iijima, S., Migone, A.D.: Neon and CO2 adsorption on open carbon nanohorns. Langmuir 29(30), 9388–9397 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42(2), 339–341 (2009)

    Article  ADS  CAS  Google Scholar 

  33. Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64 (1976)

    Article  CAS  Google Scholar 

  34. Albesa, A.G., Llanos, J.L., Vicente, J.L.: Comparative study of methane adsorption on graphite. Langmuir 24, 3836–3840 (2008)

    Article  CAS  PubMed  Google Scholar 

  35. Fennell, C.J., Gezelter, J.D.: Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J. Chem. Phys. 124(23), 234104 (2006)

    Article  ADS  PubMed  Google Scholar 

  36. Neese, F.: Software update: the ORCA program system, version 4.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8(1), e1327 (2018)

    Google Scholar 

  37. Potoff, J.J., Siepmann, J.I.: Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 47(7), 1676–1682 (2001)

    Article  ADS  CAS  Google Scholar 

  38. Rai, N., Siepmann, J.I.: Transferable potentials for phase equilibria. 10. explicit-hydrogen description of substituted benzenes and polycyclic aromatic compounds. J. Phys. Chem. B 117(1), 273–288 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. Hermosilla, M.F., Albesa, A.G.: Monte Carlo simulations of simple gases adsorbed onto graphite and molecular models of activated carbon. Adsorption 26, 1301–1322 (2020)

    Article  CAS  Google Scholar 

  40. Gallaba, D.H., Albesa, A.G., Migone, A.D.: Evidence of gate-opening on xenon adsorption on ZIF-8: an adsorption and computer simulation study. J. Phys. Chem. C 120(30), 16649–16657 (2016)

    Article  CAS  Google Scholar 

  41. Bottani, E.J., Bakaev, V., Steele, W.: A simulation/experimental study of the thermodynamic properties of carbon dioxide on graphite. Chem. Eng. Sci. 49(17), 2931–2939 (1994)

    Article  CAS  Google Scholar 

  42. Spencer, W.B., Amberg, C.H., Beebe, R.A.: Further studies of adsorption on graphitized carbon blacks. J. Phys. Chem. 62(6), 719–723 (1958)

    Article  CAS  Google Scholar 

  43. Do, D.D., Do, H.D.: Effects of potential models on the adsorption of carbon dioxide on graphitized thermal carbon black: GCMC computer simulations. Colloids Surf. A: Physicochem. Eng. Asp. 277(1–3), 239–248 (2006)

    Article  CAS  Google Scholar 

  44. Plaza, M.G., González, A.S., Pis, J.J., Rubiera, F., Pevida, C.: Production of microporous biochars by single-step oxidation: effect of activation conditions on CO2 capture. Appl. Energy 114, 551–562 (2014)

    Article  ADS  CAS  Google Scholar 

  45. Ahmed, R., Liu, G., Yousaf, B., Abbas, Q., Ullah, H., Ali, M.U.: Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation-a review. J. Clean. Prod. 242, 118409 (2020)

    Article  CAS  Google Scholar 

  46. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015)

    Article  CAS  Google Scholar 

  47. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

    Article  ADS  CAS  Google Scholar 

  48. Horvath, G., Kawazoe, K.: Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Jpn. 16(6), 470–475 (1983)

    Article  CAS  Google Scholar 

  49. Zhou, J., Li, D., Wang, Y., Tian, Y., Zhang, Z., Wei, L., Feng, W.: Effect of the feedstock type on the volumetric low-pressure CO2 capture performance of activated carbons. Energy Fuels 32(12), 12711–12720 (2018)

    Article  CAS  Google Scholar 

  50. Monson, P.A.: Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory. Microporous Mesoporous Mater. 160, 47–66 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thank CONICET and the ANPCyT (PICT-2019-4310).

Funding

ANPCyT (PICT-2019-4310).

Author information

Authors and Affiliations

Authors

Contributions

AGA I am the only author of this work.

Corresponding author

Correspondence to Alberto G. Albesa.

Ethics declarations

Conflict of interest

The author certify that he have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albesa, A.G. Monte Carlo simulation of carbon dioxide adsorption on highly crystalline carbonaceous materials obtained by chemical synthesis. Adsorption 30, 39–50 (2024). https://doi.org/10.1007/s10450-023-00431-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-023-00431-w

Keywords

Navigation