Skip to main content
Log in

Enriched virtual elements for plane elasticity with corner singularities

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We construct a nonconforming virtual element method for the approximation of singular solutions to isotropic linear elasticity problems on polygonal domains. Standard nonconforming virtual element spaces are enriched with suitable singular functions. The enrichment is based on the nonconforming structure of the discrete spaces and not on partition of unity techniques. We prove optimal convergence and assess numerically the theoretical results of the method. The proposed scheme naturally paves the way for an efficient linear elastic fracture solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In [30, (4.11)] the corresponding characteristic equation reads as follows:

    $$\begin{aligned} \sin ^2(\alpha \omega ) - \alpha ^2 \left( \frac{\lambda +\mu }{\lambda +3\mu } \right) ^2 \sin ^2 \omega = 0. \end{aligned}$$

    The reason for this is that the angle at the vertex is \((0,\omega )\) in our setting; \((-\omega /2, \omega /2)\) in [30].

References

  1. Aldakheel F, Hudobivnik B, Artioli E, Beirão da Veiga L, Wriggers P (2020) Curvilinear virtual elements for contact mechanics. Comput Methods Appl Mech Eng 372:113394

    Article  MathSciNet  MATH  Google Scholar 

  2. Artioli E, Mascotto L (2021) Enrichment of the nonconforming virtual element method with singular functions. Comput Methods Appl Mech Eng 386:114024

    Article  MathSciNet  MATH  Google Scholar 

  3. Artioli E, Marfia S, Sacco E (2020) VEM-based tracking algorithm for cohesive/frictional 2D fracture. Comput Methods Appl Mech Eng 365:112956

    Article  MathSciNet  MATH  Google Scholar 

  4. Ayuso de Dios BP, Lipnikov K, Manzini G (2016) The nonconforming virtual element method. ESAIM Math Model Numer Anal 50(3):879–904

    Article  MathSciNet  MATH  Google Scholar 

  5. Barnhill RE, Whiteman JR (1975) Error analysis of Galerkin methods for Dirichlet problems containing boundary singularities. IMA J Appl Math 15(1):121–125

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(01):199–214

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirão da Veiga L, Chernov A, Mascotto L, Russo A (2018) Exponential convergence of the \(hp\) virtual element method with corner singularity. Numer Math 138(3):581–613

    Article  MathSciNet  MATH  Google Scholar 

  8. Benvenuti E, Chiozzi A, Manzini G, Sukumar N (2019) Extended virtual element method for the Laplace problem with singularities and discontinuities. Comput Methods Appl Mech Eng 356:571–597

    Article  MathSciNet  MATH  Google Scholar 

  9. Benvenuti E, Chiozzi A, Manzini G, Sukumar N (2022) Extended virtual element method for two-dimensional linear elastic fracture. Comput Methods Appl Mech Eng 390:114352

    Article  MathSciNet  MATH  Google Scholar 

  10. Böhm Ch, Munk L, Hudobivnik B, Aldakheel F, Korelc J, Wriggers P (2023) Virtual elements for computational anisotropic crystal plasticity. Comput Methods Appl Mech Eng 405:115835

    Article  MathSciNet  MATH  Google Scholar 

  11. Brenner SC, Scott LR (2008) The mathematical theory of finite element methods, vol 3. Springer

  12. Cangiani A, Georgoulis EH, Pryer T, Sutton OJ (2017) A posteriori error estimates for the virtual element method. Numer Math 137(4):857–893

    Article  MathSciNet  MATH  Google Scholar 

  13. Costabel M, Dauge M (2002) Crack singularities for general elliptic systems. Math Nachr 235(1):29–49

    Article  MathSciNet  MATH  Google Scholar 

  14. Costabel M, Dauge M, Lafranche Y (2001) Fast semi-analytic computation of elastic edge singularities. Comput Methods Appl Mech Eng 190(15–17):2111–2134

  15. Costabel M, Dauge M (1995) Computation of corner singularities in linear elasticity. In: Lecture notes in pure and applied mathematics

  16. Dauge M (1988) Elliptic boundary value problems on corner domains. In: Lecture notes in mathematics, vol 1341. Springer, Berlin

  17. Fix G (1969) Higher-order Rayleigh–Ritz approximations. J Math Mech 18(7):645–657

    MathSciNet  MATH  Google Scholar 

  18. Fix GJ, Gulati S, Wakoff GI (1973) On the use of singular functions with finite element approximations. J Comput Phys 13(2):209–228

    Article  MathSciNet  MATH  Google Scholar 

  19. Giani S (2018) \(hp\)-Adaptive celatus enriched Discontinuous Galerkin method for second-order elliptic source problems. SIAM J Sci Comput 40(5):B1391–B1418

    Article  MathSciNet  MATH  Google Scholar 

  20. Grisvard P (2011) Elliptic problems in nonsmooth domains. SIAM

  21. Hussein A, Aldakheel F, Hudobivnik B, Wriggers P, Guidault P-A, Allix O (2019) A computational framework for brittle crack-propagation based on efficient virtual element method. Finite Elem Anal Des 159:15–32

    Article  MathSciNet  Google Scholar 

  22. Kalandiia AI (1969) Remarks on the singularity of elastic solutions near corners. J Appl Math Mech 33(1):127–131

    Article  Google Scholar 

  23. Kondrat’ev VA (1967) Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Mosk Mat Obshch 16:209–292

    MathSciNet  Google Scholar 

  24. Leguillon D, Sanchez-Palencia E (1987) Computation of singular solutions in elliptic problems and elasticity. Wiley

  25. Mascotto L (2018) Ill-conditioning in the virtual element method: stabilizations and bases. Numer Methods Part Differ Equ 34(4):1258–1281

    Article  MathSciNet  MATH  Google Scholar 

  26. Mascotto L, Perugia I, Pichler A (2018) Non-conforming harmonic virtual element method: \(h\)- and \(p\)-versions. J Sci Comput 77(3):1874–1908

    Article  MathSciNet  MATH  Google Scholar 

  27. Maz’ya VG, Plamenevskii BA (1984) On the coefficients in the asymptotic of solutions of the elliptic boundary problem in domains with conical points. Am Math Soc Trans 123:57–88

    Google Scholar 

  28. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MathSciNet  MATH  Google Scholar 

  29. Nguyen-Thanh VM, Zhuang X, Nguyen-Xuan H, Rabczuk T, Wriggers P (2018) A virtual element method for 2D linear elastic fracture analysis. Comput Methods Appl Mach Eng 340:366–395

    Article  MathSciNet  MATH  Google Scholar 

  30. Rössle A (2000) Corner singularities and regularity of weak solutions for the two-dimensional Lamé equations on domains with angular corners. J Elast 60(1):57–75

    Article  MATH  Google Scholar 

  31. Strouboulis T, Babuška I, Copps K (2000) The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng 181(1–3):43–69

    Article  MathSciNet  MATH  Google Scholar 

  32. Yemm L (2022) Design and analysis of the extended hybrid high-order method for the Poisson problem. Adv Comput Math 48(4):45

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang B, Zhao J, Yang Y, Chen S (2019) The nonconforming virtual element method for elasticity problems. J Comput Phys 378:394–410

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Artioli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

On some corner singularities for the isotropic linear elasticity problem on polygons

On some corner singularities for the isotropic linear elasticity problem on polygons

Recall splitting (4) and denote the measure of the angle at \(\textbf{A}\) by \(\omega \). In the following, we review the behaviour of the singular components \({\mathscr {S}}_{\textbf{A}}\) in the neighbourhood of vertex \(\textbf{A}\) of \(\Omega \). Such singular functions are typically given by the sum of several singular terms. In Sect. A.1, we focus on each single term of such expansion on a couple of benchmark domains; notably, we exhibit possible choices of such terms. Instead, in Sect. A.2, we review the full singular expansion.

1.1 Singular functions at corners

We compute explicitly singular solutions at corners in the kernel of the operator \(\textbf{M}\) defined in (1) of the form (5). These solutions represents singular displacement fields, corresponding to self-equilibrated stress states for the 2D material body exhibiting a re-entrant corner, which tend to infinity at the tip of the corner. Notably, the parameter \(\alpha \), and the functions \(\mathscr {S}_{1}\) and \(\mathscr {S}_{2}\) in (5) are computed in a two step procedure:

  • impose the constraint

    $$\begin{aligned} \textbf{M}(r^{\alpha } (\mathscr {S}_{1}(\theta ), \mathscr {S}_{2}(\theta ))^T) = \textbf{0}\quad \text {in } \Omega ; \end{aligned}$$
    (32)
  • impose the boundary conditions for \(\theta =0\) and \(\theta =\omega \).

Introduce

$$\begin{aligned} F(\alpha ):= \lambda + 3\mu - \alpha (\lambda + \mu ), \quad G(\alpha ):= \lambda + 3\mu + \alpha (\lambda + \mu ). \end{aligned}$$

As in [30, equation (4.7)], imposing (32) for functions in the form (5) yields, for \(\alpha \in \mathbb R^+\) to be fixed later,

$$\begin{aligned} \begin{aligned} {\mathscr {S}}_{\textbf{A}}(\theta )&= c_1(\alpha ) \begin{pmatrix} \cos [(1+\alpha ) \theta ] \\ -\sin [(1+\alpha ) \theta ] \end{pmatrix} \\&\quad + c_2(\alpha ) \begin{pmatrix} \sin [(1+\alpha ) \theta ] \\ \cos [(1+\alpha ) \theta ] \end{pmatrix} \\&\quad + c_3(\alpha ) \begin{pmatrix} F(\alpha ) \cos [(1 - \alpha ) \theta ] \\ -G(\alpha ) \sin [(1 - \alpha ) \theta ] \end{pmatrix} \\&\quad + c_4(\alpha ) \begin{pmatrix} F(\alpha ) \sin [(1 - \alpha ) \theta ] \\ G(\alpha ) \cos [(1 - \alpha ) \theta ] \end{pmatrix}. \end{aligned} \end{aligned}$$
(33)

So far, \(\alpha \) denotes an arbitrary singular exponents at corner \(\textbf{A}\), which has to be fixed so that the function in (33) fulfils suitable homogeneous boundary conditions. Explicit choices of \(\alpha \) are determined solving a \(4\times 4\) system with unknowns given by \(c_j(\alpha )\), \(j=1,\dots , 4\), which is obtained imposing the homogeneous boundary conditions.

Recall that \(\omega \) denotes the measure of \(\textbf{A}\) and that the angular part of the polar coordinates takes value in \((0,\omega )\). For the sake of exposition, we focus on Dirichlet boundary conditions only, which correspond to clamped edges of the re-entrant corner.

Imposing homogeneous Dirichlet boundary conditions in (33), the resulting \(4\times 4\) system reads

$$\begin{aligned} \begin{pmatrix} \cos [(1+\alpha )0] &{} \sin [(1+\alpha )0] &{} F(\alpha ) \cos [(1-\alpha )0] &{} F(\alpha ) \sin [(1-\alpha )0]\\ \cos [(1+\alpha )\omega ] &{} \sin [(1+\alpha )\omega ] &{} F(\alpha ) \cos [(1-\alpha )\omega ] &{} F(\alpha ) \sin [(1-\alpha )\omega ]\\ -\sin [(1+\alpha )0] &{} \cos [(1+\alpha )0] &{} -G(\alpha ) \sin [(1-\alpha )0] &{} G(\alpha ) \cos [(1-\alpha )0]\\ -\sin [(1+\alpha )\omega ] &{} \cos [(1+\alpha )\omega ] &{} -G(\alpha ) \sin [(1-\alpha ) \omega ] &{} G(\alpha ) \cos [(1-\alpha ) \omega ]\\ \end{pmatrix} \begin{pmatrix} c_1(\alpha )\\ c_2(\alpha )\\ c_3(\alpha )\\ c_4(\alpha ) \end{pmatrix}= \begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}, \end{aligned}$$

i.e.,

$$\begin{aligned} \begin{pmatrix} 1 &{} 0 &{} F(\alpha ) &{} 0 \\ \cos [(1+\alpha )\omega ] &{} \sin [(1+\alpha )\omega ] &{} F(\alpha ) \cos [(1-\alpha )\omega ] &{} F(\alpha ) \sin [(1-\alpha )\omega ]\\ 0 &{} 1 &{} 0 &{} G(\alpha ) \\ -\sin [(1+\alpha )\omega ] &{} \cos [(1+\alpha )\omega ] &{} -G(\alpha ) \sin [(1-\alpha ) \omega ] &{} G(\alpha ) \cos [(1-\alpha ) \omega ]\\ \end{pmatrix} \begin{pmatrix} c_1(\alpha )\\ c_2(\alpha )\\ c_3(\alpha )\\ c_4(\alpha ) \end{pmatrix}= \begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}. \end{aligned}$$
(34)

System (34) admits a nontrivial solution if the determinant of the system matrix is zero. Imposing such a determinant to be zero is equivalent to solving the so-called characteristic equation.

In the case of homogeneous Dirichlet, i.e., clamped boundary conditions, the characteristic equation reads as follows, see, e.g., [30, Sect. 4],Footnote 1 find \(\alpha \in \mathbb {R}_+\) such that

$$\begin{aligned} \sin ^2(\alpha \omega ) - \alpha ^2 \lambda \frac{\lambda +2\mu }{(\lambda +3\mu )^2} \sin ^2 \omega = 0. \end{aligned}$$
(35)

Next, we look for explicit \(\alpha \) solutions to (35) on two benchmark domains.

Example A.1

We focus on the re-entrant corner (0, 0) of the L-shaped domain

$$\begin{aligned} \Omega _1:= (-1,1)^2 \setminus [0,1) \times (-1,0], \end{aligned}$$

and fix the following Lamé parameters:

$$\begin{aligned} \lambda = -\frac{7}{2} + 9 \frac{\sqrt{2}}{2}, \quad \mu = \frac{7}{2} - 3 \frac{\sqrt{2}}{2}. \end{aligned}$$

We have \(\omega = 3\pi /2\); the first three real smallest solutions to (35) read

$$\begin{aligned} \begin{aligned} \alpha _1&= 0.58917798046021; \quad \alpha _2 = 0.769651906609214; \\ \alpha _3&= 7/6. \end{aligned} \end{aligned}$$

The corresponding characteristic equation has a finite number of real solutions.

Next, we show how to recover the singular function in (5). To the aim, we only consider the case \(\alpha =\alpha _3\). The coefficients \(c_j(7/6)\), \(j=1,\dots ,4\), in (33) are found by solving the system (34) for the given values of \(\alpha \), \(\lambda \), and \(\mu \). In particular, the rank-3 system is

$$\begin{aligned}{} & {} \begin{pmatrix} 1 &{} 0 &{} 7\left( 1-\frac{\sqrt{2}}{2} \right) &{} 0 \\ -\frac{\sqrt{2}}{2} &{} -\frac{\sqrt{2}}{2} &{} 7\left( 1-\frac{\sqrt{2}}{2} \right) \frac{\sqrt{2}}{2} &{} -7 \left( 1-\frac{\sqrt{2}}{2} \right) \frac{\sqrt{2}}{2}\\ 0 &{} 1 &{} 0 &{} 7 \left( 1 + \frac{\sqrt{2}}{2} \right) \\ \frac{\sqrt{2}}{2} &{} -\frac{\sqrt{2}}{2} &{} 7 \left( 1 + \frac{\sqrt{2}}{2} \right) \frac{\sqrt{2}}{2} &{} 7 \left( 1 + \frac{\sqrt{2}}{2} \right) \frac{\sqrt{2}}{2}\\ \end{pmatrix}\\{} & {} \quad \times \begin{pmatrix} c_1(7/6)\\ c_2(7/6)\\ c_3(7/6)\\ c_4(7/6) \end{pmatrix}= \begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}. \end{aligned}$$

There are infinite solutions to this problem: for any \(c_4(7/6)\),

$$\begin{aligned} \begin{aligned}&c_1(7/6) = 7 \left( 1-\frac{\sqrt{2}}{2} \right) (\sqrt{2} + 1) c_4(7/6), \\&c_2(7/6) = -7\left( 1+\frac{\sqrt{2}}{2} \right) c_4(7/6), \\&c_3(7/6) = -(\sqrt{2} + 1) c_4(7/6). \end{aligned} \end{aligned}$$

In particular, the explicit singular solution belongs to\(H^{\frac{13}{6} - \varepsilon }(\Omega )\), for all arbitrarily small, positive \(\varepsilon \), and is a multiple of

$$\begin{aligned} r^{\frac{7}{6}} {\mathscr {S}}_{\textbf{A}}(\theta )= & {} r^{\frac{7}{6}} \left[ 7 (1 - \sqrt{2} / 2 ) (\sqrt{2} + 1)\begin{pmatrix} \cos ( 13 \theta /6 ) \nonumber \\ -\sin ( 13 \theta /6) \end{pmatrix} \right. \\{} & {} \left. -\,7 (1 + \sqrt{2} / 2 ) \begin{pmatrix} \sin ( 13 \theta /6) \\ \cos ( 13 \theta /6) \end{pmatrix} \right. \nonumber \\{} & {} \left. -\,(\sqrt{2} + 1) \begin{pmatrix} 7\left( 1 - \frac{\sqrt{2}}{2}\right) \cos ( \theta /6) \\ + 7\left( 1 + \frac{\sqrt{2}}{2}\right) \sin ( \theta /6) \end{pmatrix} \right. \nonumber \\{} & {} \left. + \,\begin{pmatrix} - 7\left( 1 - \frac{\sqrt{2}}{2}\right) \sin (\theta /6) \\ 7\left( 1 + \frac{\sqrt{2}}{2}\right) \cos (\theta /6) \end{pmatrix} \right] . \end{aligned}$$
(36)

Example A.2

We focus on the tip of the the slit domain

$$\begin{aligned} \Omega _2:= (-1,-1)^2 \setminus \{ \{ 0 \} \times [0,1) \}. \end{aligned}$$

In this case,  \(\omega = 2 \pi \) and (35) simply reads

$$\begin{aligned} \sin ^2(2\pi \alpha ) = 0. \end{aligned}$$

This equation has positive solutions \(\alpha \) given by

$$\begin{aligned} 2\pi \alpha = k \pi \quad \forall k \in \mathbb N \quad \quad \longrightarrow \alpha = \frac{k}{2} \quad \forall k \in \mathbb N. \end{aligned}$$

Interestingly, all the singular values \(\alpha \) do not depend on the Lamé coefficients.

For the sake of exposition, we focus on the strongest singularity \(\alpha = 1/2\). Compute

$$\begin{aligned} F(1/2) = \frac{1}{2} \lambda + \frac{5}{2} \mu , \quad \quad G(1/2) = \frac{3}{2} \lambda + \frac{7}{2} \mu . \end{aligned}$$

The coefficients \(c_j(\alpha )\), \(j=1,\dots ,4\), in (33) are found by solving the system (34) for the given \(\alpha \), and for all \(\lambda \) and \(\mu \). In particular, the rank-2 system is

$$\begin{aligned} \begin{pmatrix} 1 &{} 0 &{} F(1/2) &{} 0 \\ -1 &{} 0 &{} -F(1/2) &{} 0 \\ 0 &{} 1 &{} 0 &{} G(1/2) \\ 0 &{} -1 &{} 0 &{} -G(1/2) \\ \end{pmatrix} \begin{pmatrix} c_1(1/2)\\ c_2(1/2)\\ c_3(1/2)\\ c_4(1/2) \end{pmatrix}= \begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}. \end{aligned}$$
(37)

There are two families of solutions to the linear system (34). They correspond to the two following choices of the coefficients in (33):

$$\begin{aligned} c_1(1/2)&= - F(1/2) c_3(1/2) \quad \quad \forall c_3 (1/2) \in \mathbb R, \\ c_2(1/2)&= - G(1/2) c_3(1/2) \quad \quad \forall c_4 (1/2) \in \mathbb R. \end{aligned}$$

Thus, the singular solutions are

$$\begin{aligned}&r^{\frac{1}{2}} {\mathscr {S}}_{\textbf{A}}^1(\theta ) \nonumber \\&\quad = r^{\frac{1}{2}} \left[ -F(1/2) \begin{pmatrix} \cos ( 3/2 \theta ) \\ -\sin ( 3/2 \theta ) \end{pmatrix} + \begin{pmatrix} F(1/2) \sin ( 1/2 \theta ) \\ -G(1/2) \cos ( 1/2 \theta ) \end{pmatrix} \right] \end{aligned}$$
(38)

and

$$\begin{aligned}&r^{\frac{1}{2}} {\mathscr {S}}_{\textbf{A}}^2(\theta ) \nonumber \\&\quad = r^{\frac{1}{2}} \left[ -G(1/2) \begin{pmatrix} \sin ( 3/2 \theta ) \\ \cos ( 3/2 \theta ) \end{pmatrix} + \begin{pmatrix} F(1/2) \sin ( 1/2 \theta ) \\ G(1/2) \cos ( 1/2 \theta ) \end{pmatrix} \right] . \end{aligned}$$
(39)

The functions in (38) and (39) belong to \(H^{\frac{3}{2} - \varepsilon }(\Omega )\), for all arbitrarily small, positive \(\varepsilon \). They are found in linear elastic fracture mechanics as reported, e.g., in the classical paper [28].

The Lamé parameters do not come into play in the singular exponents \(\alpha \), but only in the linear combination appearing in the above singular functions. This is not the case of Example A.1, where also the singular exponent \(\alpha \) used to depend on the Lamé parameters.

Besides, there are infinitely many singular exponents \(\alpha \). Instead, in Example A.1, there is only a finite number of real exponents \(\alpha \).

Remark 1

So far, we mainly focused on the case of Dirichlet and homogeneous Neumann boundary conditions on the two edges abutting vertex \(\textbf{A}\). The above way of reasoning extends to all possible combinations of boundary conditions. We refer to [30] for the counterpart of the characteristic equation to solve. The relevant point is that, in the analysis of the method, the actual representation of the singular function is not relevant as long as it satisfies (6).

1.2 General singular expansions at vertices

We review the full singular expansions at a vertex as in [30]; see also Dauge [16], Grisvard [20], Maz’ya and Plamenevskii [27].

Let \(\alpha _0\) be such that (32) is satisfied and let \(\textbf{e}_0 = \textbf{e}_0 (\alpha ,\varphi )\) be an associated eigenfunction. The set of fields \(\{ \textbf{e}_{0,0},\, \textbf{e}_{0,1},\, \dots , \textbf{e}_{0,k} \}\) with \(\textbf{e}_{0,0}=\textbf{e}_0\) is called a Jordan chain to \(\alpha \) if

$$\begin{aligned} \sum _{q=0}^m \frac{1}{m!} \left( \frac{\partial }{\partial \alpha } \right) ^q \textbf{M}\ \textbf{e}_{0,m-q} (\alpha ,\theta )_{|\alpha =\alpha _0} = 0 \quad \forall m=1,2,\dots , k. \end{aligned}$$

We call the number \(k+1\) the length of the Jordan chain.

The main result of this section was proven, e.g., in [30, Theorem 3.1]; see also the references therein.

Theorem A.1

Let \(\textbf{u}\) be the solution to (3) on a polygonal domain \(\Omega \). Given \(\textbf{A}\) one of the vertices of \(\Omega \), \(\textbf{u}\) admits an asymptotic expansion in polar coordinates at \(\textbf{A}\) of the form

$$\begin{aligned} \textbf{u}(r,\theta ) = \eta (r) \left[ \sum _{i=1}^M \sum _{j=0}^{m_i-1} \textbf{c}_{i,j} \textbf{s}_{i,j} (r,\theta ) \right] + \textbf{w}(r,\theta ). \end{aligned}$$

In the above equation:

  • \(\eta \) denotes a cut-off function, which localises the singular behaviour of the solution;

  • M is the number of eigenvalues of \(\textbf{M}\) with \(\mathbb{R}\mathbb{e} (\alpha ) \in (0,1)\), where multiple eigenvalues are counted multiple times accordingly;

  • \(m_i\), for all \(i=1,\dots ,M\), is the length of the Jordan chain corresponding to the eigenfunction \(\textbf{e}{i}\);

  • \(\textbf{c}_{i,j}\) are suitable coefficients, called stress intensity factors, which are explicitly known [27];

  • \(\textbf{s}_{i,j}\) are the singular functions

    $$\begin{aligned} \textbf{s}_{i,j} (r,\omega ) = r^{\alpha _i} \sum _{k=0}^j \frac{\ln ^k(r)}{k!} \textbf{e}_{i,j-k} (\alpha _i,\theta ); \end{aligned}$$
    (40)
  • \(\textbf{w}\) belongs to \(H^2\) in a neighbourhood inside \(\Omega \) of \(\textbf{A}\).

Remark 2

As discussed, e.g., in [14, Sect. 6], if the multiplicity of \(\alpha \) is equal to the kernel of the system matrix in (34), then the length of the Jordan chain is one. Consequently, expansion (40) contains no logarithmic factors. This is for instance the case of the L-shaped domain benchmark in Example A.1. In principle, as for the slit domain benchmark in Example A.2, the multiplicity of all the \(\alpha \) solving the characteristic equation is 2, which is the dimension of the kernel of the matrix (37). For this reason, we could also compute the second element of the Jordan chain and investigate the behaviour of singular functions containing an extra logarithmic singularity factor.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artioli, E., Mascotto, L. Enriched virtual elements for plane elasticity with corner singularities. Comput Mech (2023). https://doi.org/10.1007/s00466-023-02418-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-023-02418-4

Keywords

AMS subject classification

Navigation