Skip to main content
Log in

Isolation and Physicochemical Characteristics of Water-Soluble Polysaccharide from Locally Growing and Cultivated Basidium Raw Materials of Ganoderma lucidum

  • NATURAL POLYMERS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Branched polysaccharides have been isolated from basidiomycete raw materials of locally growing and cultivated Ganoderma lucidum. It has been found that the isolated fractions contain branched polysaccharides in the form of complexes with melanin. After purification of polysaccharides by ion exchange chromatography from locally growing and cultivated basidial raw materials, two fractions have been obtained: neutral polysaccharides of locally growing Ganoderma lucidum (GW-1), cultivated Ganoderma lucidum (GWL-1) with a yield of 25.71 and 29.85%, respectively, and anionic polysaccharides of locally growing Ganoderma lucidum (GW-2), cultivated Ganoderma lucidum (GWL-2), with a yield of 5.26 and 4.19%. The physicochemical properties of the obtained samples have been studied by IR and UV spectroscopies. The purity degree of fractions of branched polysaccharides has been determined. Using gas chromatography, one-dimensional (13C NMR, 1H NMR), and two-dimensional (COSY, TOCSY, HSQC, HMBC, NOESY) NMR spectroscopies, the compositions and molecular structures of the obtained polysaccharide samples have been determined. The results showed that the isolated and purified polysaccharides are β-glucan-type branched polysaccharides that have branch point (1,4,6)- and (1,3,6)-linked glucopyranose residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. P. Wasser and A. L. Weis, Int. J. Med. Mushr. 1, 31 (1999).

    Article  CAS  Google Scholar 

  2. S. P. Wasser, Appl. Microbiol. Biotechnol. 60, 258 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. T. Mizuno, Foods Food Ingred. J. Jpn. 167, 69 (1996).

    CAS  Google Scholar 

  4. T. Mizuno, Food Rev. Intern. 11, 173 (1995).

    Article  CAS  Google Scholar 

  5. P. A. J. Gorin and E. Barreto-Berger, The Polysaccharides, Ed. by G. O. Aspinall (Acad. Press, New York, 1983).

    Google Scholar 

  6. W. Liu, W. Lu, L. Chai, Y. Liu, W. Yao, and H. Gao, Carbohydr. Polym. 176, 140 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. G. Qingbin, A. Lianzhong, W. Steve, and Q. Cui, Springer Briefs in Molecular Science Biobased Polymers, Ed. by P. Navard (Switzerland, 2018).

    Google Scholar 

  8. D. Pan, L. Wang, C. Chen, B. Teng, Ch. Wang, Z. Xu, B. Hu, and P. Zhou, Food Chem. 135, 1097 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. S. Magdeldin, Affinity Chromatography: Principles and Applications (China, InTech, 2012).

    Book  Google Scholar 

  10. X. Zhao, J. Pu, and X. Luan, Carbohydr. Res. 143, 296 (2016).

    Article  Google Scholar 

  11. Y.-T. Kim, E.-H. Kim, Ch. Cheong, D. L. Williams, Ch.-Wh. Kim, and S.-T. Lim, Carbohydr. Res. 328, 331 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. B. K. Patel, O. H. Campanella, and S. Janaswamy, Carbohydr. Polym. 92, 1873 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Y. Tao, R. Zhang, Y. Wei, H. Liu, H. Yang, and Q. Zhao, Carbohydr. Polym. 128, 179 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. S. B. Khaytmetova, A. S. Turaeva, and G. A. Khalilova, Polym. Sci. B 64, 500 (2022).

    CAS  Google Scholar 

  15. H. Bjomdal, C. Hellerqvist, B. Lindberg, and S. Svensson, Angew. Chem. Int. Ed. Eng. 9, 610 (1970).

    Article  Google Scholar 

  16. G. Arun, M. Eyini, and P. Gunasekaran, J. Experim. Biol. 53, 380 (2015).

    CAS  Google Scholar 

  17. Y. Tian, K. Elbing, and H. Stefan, Microbiology 154, 2814 (2008).

    Article  Google Scholar 

  18. W. Jianguo, Y. Yahong, and Y. Tianli, Carbohydr. Polym. 10, 247 (2014).

    Google Scholar 

  19. G. A. Khalilova, A. S. Turaev, B. I. Muhitdinov, A. V. Filatova, S. B. Haytmetova, and N. S. Normakhamatov, Am. J. Appl. Sci. 3 (1), 9 (2021).

    Google Scholar 

  20. H. H. Ding, S. W. Cui, H. D. Goff, J. Chen, Q. Guo, and Q. Wang, Carbohydr. Polym. 151, 538 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Y. Ren, Y. Bai, Z. Zhang, W. Cai, R. Del, and A. Flores, Molecules 24, 3122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. G. A. Khalilova, A. S. Turaev, B. I. Muhitdinov, S. B. Khaytmetova, L. B. Azimova, and N. S. Normakhamatov, Dokl. AN Resp. Uzb. 5, 55 (2020).

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Khaytmetova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaytmetova, S.B., Turaev, A.S., Khalilova, G.A. et al. Isolation and Physicochemical Characteristics of Water-Soluble Polysaccharide from Locally Growing and Cultivated Basidium Raw Materials of Ganoderma lucidum. Polym. Sci. Ser. A 65, 522–532 (2023). https://doi.org/10.1134/S0965545X23701201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X23701201

Navigation