Skip to main content
Log in

Electrochemical Fe3+ Ion Sensor Applications on Different Electrode Surfaces

  • FUNCTIONAL POLYMERS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The carbazole compound (C-C8) containing aromatic ring with 8 carbon alkyl group (C8) was synthesized. The thiophene-derived compound that was abbreviated as (T) was synthesized, and (CT-C8) was obtained by adding of (T) to the starting compound (C-C8). Additionally, the electrochemical polymers of CT-C8 were synthesized and accumulated onto different surface types such as an indium tin oxide (ITO) coated glass, aluminum (Al) layer, copper (Cu) sheet and pen tip electrode (PTE). The electrochemical syntheses of the polymers were performed by using 0.05 M NaClO4 as an electrolyte in acetonitrile (AN) solvent. The electrochemical behaviors of the polymers were also investigated by taking the cyclic voltammeric measurements with a triple electrode system, and the electrochemical behaviors of the coated polymers on different electrode surfaces were also researched in the presence of Fe3+ and Fe2+ metals. According to the obtained voltammogram results, it can be said that the electrochemically synthesized polymers on different electrode surfaces were sensitive to Fe3+ metal and they could be used as an electrochemical sensor for all electrode surfaces as mentioned above. For the performed electrochemical measurements, the oxidation and reduction peak values obtained for different electrode surfaces were different from each other. When it is desired to examine the electrochemical property of a material, there is a need to search for more useful and economical insoles, since the conductive surface like ITO is deformed after repeated applications and expensive. This study, which offers an alternative conductive base to replace ITO, is important in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. H. F. Ko, C. Sfeir, and P. N. Kumta, Philos. Trans. R. Soc., A 368, 1981 (2010).

  2. Y. Wu and M. E. Meyerhoff, Talanta 75, 642 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. D. Kim, H. Kwon, and J. Seo, Polym. Compos. 35, 644 (2014).

    Article  CAS  Google Scholar 

  4. J. Tan and J. Xu, Artif. Intell. Agric. 4, 104 (2020).

    Google Scholar 

  5. S. Cichosz, A. Masek, and M. Zaborski, Polym. Test. 67, 342 (2018).

    Article  CAS  Google Scholar 

  6. A. S. Algami, M. H. M. Khir, J. O. Dennis, A. Y. Ahmed, S. S. Alabsi, S. S. B. Hashwan, and M. M. Junaid, Nanoscale Res. Lett. 16, 1 (2021).

    Article  Google Scholar 

  7. G. Alberti, C. Zanoni, V. Losi, L. R. Magnaghi, and R. Biesuz, Chemosensors 9, 108 (2021).

    Article  CAS  Google Scholar 

  8. K. Namsheer and C. S. Rout, RSC Adv. 11, 5659 (2021).

    Article  Google Scholar 

  9. R. Devi, M. Thakur, and C. S. Pundir, Biosens. Bioelectron. 26, 3420 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. A. Korent, K. Žagar Soderžnik, S. Šturm, K. Žužek Rožman, N. Redon, J.-L. Wojkiewicz, and C. Duc, Sensors 21, 169 (2021).

    Article  CAS  Google Scholar 

  11. K. Kakaei, M. D. Esrafili, and A. Ehsani, Interface Sci. Technol. 27, 339 (2019).

    Article  Google Scholar 

  12. A. A. Kocaeren, Org. Electron. 24, 219 (2015).

    Article  CAS  Google Scholar 

  13. A. A. Kocaeren, J. Polym. Res. 23, 1 (2016).

    Article  CAS  Google Scholar 

  14. S. H. Yu, J. Cho, K. M. Sim, J. U. Ha, and D. S. Chung, ACS Appl. Mater. Interfaces 8, 6570 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. O. N. Oliveira, Jr., F. L. G. Marystela, F. de Lima Leite, and A. L. Da Róz, Nanoscience and Its Applications (Elsevier, 2017).

    Google Scholar 

  16. D. Ş. Bahçeci, N. Demir, and A. A. Kocaeren, Chemistry Select 7, e202202096 (2022).

  17. A. A. Kocaeren, D. Ş. Bahçeci, and F. Doğan, Polym. Sci., Ser. A 64, 685 (2022).

    Article  Google Scholar 

  18. A. A. Kocaeren, Eur. J. Sci. Technol. 28, 263 (2021).

    Google Scholar 

  19. C. B. Tran, Z. Zondaka, Q. B. Le, B. K. Velmurugan, and R. Kiefer, Materials 14, 6302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Ates, N. Uludag, F. Arıcan, and T. Karazehir, Turk. J. Chem. 39, 194 (2015).

    Article  CAS  Google Scholar 

  21. L. Özcan, AKU J. Sci. Eng. 19, 291 (2019).

    Google Scholar 

  22. S. Yanık, S. B. Kurt, B. Ari, S. Demirci, and S. Yılmaz, J. Sci. Perspect. 4, 223 (2020).

    Google Scholar 

  23. M. Kavanoz and G. Kılıç, J. Turk. Chem. Soc., Sect. A 2, 42 (2015).

    Google Scholar 

  24. H. Iwami, M. Okamura, M. Kondo, and S. Masaoka, Angew. Chem. Int. Ed. 60, 5965 (2021).

    Article  CAS  Google Scholar 

  25. X. Liu, T. Xiao, W. M.-Y. Shen, M. Zhang, H. Yu, and L. Mao, Angew. Chem. 129, 11964 (2017).

    Article  Google Scholar 

  26. D. Fichou and G. Horowitz, Encyclopedia of Materials: Science and Technology, Ed. by K. H. J. Buschow, M. C. Flemings, E. J. Kramer, P. Veyssière, R. W. Cahn, B. Ilschner, and S. Mahajan, 2nd ed., (Elsevier, 2021), p. 5748 (2001).

  27. Y. Wei, C. C. Chan, J. Tian, G. W. Jang, and K. F. Hsueh, Chem. Mater. 3, 888 (1991).

    Article  CAS  Google Scholar 

  28. S. Kasemthaveechok, L. Abella, M. Jean, M. Cordier, N. Vanthuyne, T. Guizouarn, O. Cador, J. Autschbach, J. Crassous, and L. Favereau, J. Am. Chem. Soci. 144, 7253 (2022).

    Article  CAS  Google Scholar 

  29. T. Darmanin and F. Guittard, Langmuir 25, 5463 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. F. Dumur, Eur. Polym. J. 125, 109503 (2020).

  31. M. Guzel, Y. Torlak, H. Choi, and M. Ak, Eur. Polym. J. 186, 111857 (2023).

  32. R. J. Waltman, J. Bargon, and A. F. Diaz, J. Phys. Chem. 87, 1459 (1983).

    Article  CAS  Google Scholar 

  33. E. Jyoti, T Dmitrieva, D. Żołek, R. Maciejewska, W. Rybakiewicz-Sekita, A. Kutner, and K. R. Noworyta, Electrochim. Acta 429, 140948 (2022).

  34. C. Escalona, F. Estrany, J. C. Ahumada, N. Borras, J. P. Soto, and C. Alemán, Polym. Bull. 77, 1 (2020).

    Article  Google Scholar 

  35. H. Li, R. Meng, Y. Guo, B. Chen, Y. Jiao, C. Ye, Y. Long, A. Tadich, Q.-H. Yang, M. Jaroniec, and S.‑Z. Qiao, Nat. Commun. 12, 5714 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. M. Hyde and P. M. Wood, Microbiology 143, 259 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. K. A Jeong, S. K. Lee, and N. S. Myoung, Opt. Mater. Express 9, 2964 (2019).

    Article  CAS  Google Scholar 

  38. A. J. Pahl, A. Shapley, A. L. Faisst, P. L. Capak, X. Du, N. A. Reddy, P. Laursen, and M. W. Topping, Mon. Not. R. Astron. Soc. 493, 3194 (2020).

    Article  CAS  Google Scholar 

  39. J. Oriou, F. Ng, G. Hadziioannou, C. Brochon, and E. Cloutet, J. Polym. Sci., Part A: Polym. Chem. 53, 2059 (2015).

    Article  CAS  Google Scholar 

  40. S. Aeiyach, E. A. Bazzaoui, and P.-C. Lacaze, J. Electroanal. Chem. 434, 153 (1997).

    Article  CAS  Google Scholar 

  41. W. Li, T. Cochell, and A. Manthiram, Sci. Rep. 3, 1229 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. K. Karon and M. Lapkowski, J. Solid State Electrochem. 19, 2601 (2015).

    Article  CAS  Google Scholar 

  43. K. Lin, C. Li, W. Tao, J. Huang, Q. Wu, Z. Liu, Y. Zhang, D. Wang, and X. Liu, Front. Chem. 8, 819 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. V. M. Geskin and J.-L. Brédas, ChemPhysChem. 4, 498 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. H. Tamura, S. Kawamura, and M. Hagayama, Corros. Sci. 20, 963 (1980).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysel Aydın Kocaeren.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aysel Aydın Kocaeren Electrochemical Fe3+ Ion Sensor Applications on Different Electrode Surfaces. Polym. Sci. Ser. A 65, 488–503 (2023). https://doi.org/10.1134/S0965545X23701213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X23701213

Navigation