Skip to main content
Log in

Crystal Structures of Two Metal-Organic Frameworks Based on Zn(II) and 2,5-Diiodoterephthalate

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Three-dimensional coordination polymers Cat2[{Zn4O}2(H2O)2(2,5-I-bdc)7] (1) (2,5-I-bdc = 2,5-diiodoterephthalate, Cat is dimethylammonium) and [Zn2(2,5-I-bdc)2dabco] (2) (dabco is 1,4-diazobicyclo [2.2.2]octane) are prepared. The structures of 1 and 2 are determined by single crystal X-ray diffraction. It is shown that the structure of 2 has a halogen bond between guest DMF molecules and the MOF iodine atom. The I⋯O distances are 2.93-3.03 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. M. A. Agafonov, E. V. Alexandrov, N. A. Artyukhova, G. E. Bekmukhamedov, V. A. Blatov, V. V. Butova, Y. M. Gayfulin, A. A. Garibyan, Z. N. Gafurov, Y. G. Gorbunova, L. G. Gordeeva, M. S. Gruzdev, A. N. Gusev, G. L. Denisov, D. N. Dybtsev, Y. Y. Enakieva, A. A. Kagilev, A. O. Kantyukov, M. A. Kiskin, K. A. Kovalenko, A. M. Kolker, D. I. Kolokolov, Y. M. Litvinova, A. A. Lysova, N. V. Maksimchuk, Y. V. Mironov, Y. V. Nelyubina, V. V. Novikov, V. I. Ovcharenko, A. V. Piskunov, D. M. Polyukhov, V. A. Polyakov, V. G. Ponomareva, A. S. Poryvaev, G. V. Romanenko, A. V. Soldatov, M. V. Solovyeva, A. G. Stepanov, I. V. Terekhova, O. Y. Trofimova, V. P. Fedin, M. V. Fedin, O. A. Kholdeeva, A. Yu. Tsivadze, U. V. Chervonova, A. I. Cherevko, V. F. Shul′gin, E. S. Shutova, and D. G. Yakhvarov. Metal-organic frameworks in Russia: From the synthesis and structure to functional properties and materials. J. Struct. Chem., 2022, 63(5), 671-843. https://doi.org/10.1134/s0022476622050018

    Article  CAS  Google Scholar 

  2. P. A. Demakov and V. P. Fedin. Synthesis and structure of new europium(III) and terbium(III) coordination polymers with trans-1,4-cyclohexanedicarboxylic acid. Russ. Chem. Bull., 2022, 71(5), 967-973. https://doi.org/10.1007/s11172-022-3498-y

    Article  CAS  Google Scholar 

  3. O. Semyonov, S. Chaemchuen, A. Ivanov, F. Verpoort, Z. Kolska, M. Syrtanov, V. Svorcik, M. S. Yusubov, O. Lyutakov, O. Guselnikova, and P. S. Postnikov. Smart recycling of PET to sorbents for insecticides through in situ MOF growth. Appl. Mater. Today, 2021, 22, 100910. https://doi.org/10.1016/j.apmt.2020.100910

    Article  Google Scholar 

  4. A. A. Lysova, K. A. Kovalenko, A. S. Nizovtsev, D. N. Dybtsev, and V. P. Fedin. Efficient separation of methane, ethane and propane on mesoporous metal-organic frameworks. Chem. Eng. J., 2023, 453, 139642. https://doi.org/10.1016/j.cej.2022.139642

    Article  CAS  Google Scholar 

  5. M. Erzina, O. Guselnikova, R. Elashnikov, A. Trelin, D. Zabelin, P. Postnikov, J. Siegel, A. Zabelina, P. Ulbrich, Z. Kolska, M. Cieslar, V. Svorcik, and O. Lyutakov. BioMOF coupled with plasmonic CuNPs for sustainable CO2 fixation in cyclic carbonates at ambient conditions. J. CO2 Util., 2023, 69, 102416. https://doi.org/10.1016/j.jcou.2023.102416

    Article  CAS  Google Scholar 

  6. D. S. Yambulatov, J. K. Voronina, A. S. Goloveshkin, R. D. Svetogorov, S. L. Veber, N. N. Efimov, A. K. Matyukhina, S. A. Nikolaevskii, I. L. Eremenko, and M. A. Kiskin. Change in the electronic structure of the cobalt(II) ion in a one-dimensional polymer with flexible linkers induced by a structural phase transition. Int. J. Mol. Sci., 2022, 24(1), 215. https://doi.org/10.3390/ijms24010215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. K. P. Birin, I. V. Shlykov, I. N. Senchikhin, L. I. Demina, Y. G. Gorbunova, and A. Y. Tsivadze. An approach towards modification of UiO-type MOFs with phosphonate-substituted porphyrins. Polyhedron, 2022, 219, 115794. https://doi.org/10.1016/j.poly.2022.115794

    Article  CAS  Google Scholar 

  8. K. A. Koshenskova, I. A. Lutsenko, Y. V. Nelyubina, P. V. Primakov, T. M. Aliev, O. B. Bekker, A. V. Khoroshilov, S. N. Mantrov, M. A. Kiskin, and I. L. Eremenko. Copper(II) complexes with 5-nitro-2-furoic acid: synthesis, structure, thermal properties, and biological activity. Russ. J. Inorg. Chem., 2022, 67(10), 1545-1556. https://doi.org/10.1134/s003602362270005x

    Article  CAS  Google Scholar 

  9. E. Dhivya, S. Saravanan, and N. Aman. Synthesis of MIL-125/NTU-9 heterojunction MOF for photocatalytic removal of aquatic pollutants. Russ. J. Inorg. Chem., 2022, 67(S2), S141-S149. https://doi.org/10.1134/s0036023622602756

    Article  CAS  Google Scholar 

  10. R. Wang, H. Xu, K. Zhang, S. Wei, and W. Deyong. High-quality Al@Fe-MOF prepared using Fe-MOF as a micro-reactor to improve adsorption performance for selenite. J. Hazard. Mater., 2019, 364, 272-280. https://doi.org/10.1016/j.jhazmat.2018.10.030

    Article  CAS  PubMed  Google Scholar 

  11. W. Zhang, A. Nafady, C. Shan, L. Wojtas, Y. S. Chen, Q. Cheng, X. P. Zhang, and S. Ma. Functional porphyrinic metal–organic framework as a new class of heterogeneous halogen-bond-donor catalyst. Angew. Chem., Int. Ed., 2021, 60(45), 24312-24317. https://doi.org/10.1002/anie.202111893

    Article  CAS  Google Scholar 

  12. D. M. Polyukhov, N. A. Kudriavykh, S. A. Gromilov, A. S. Kiryutin, A. S. Poryvaev, and M. V. Fedin. Efficient MOF-catalyzed ortho–para hydrogen conversion for practical liquefaction and energy storage. ACS Energy Lett., 2022, 7(12), 4336-4341. https://doi.org/10.1021/acsenergylett.2c02149

    Article  CAS  Google Scholar 

  13. W. Zhang, A. Nafady, C. Shan, L. Wojtas, Y. Chen, Q. Cheng, X. P. Zhang, and S. Ma. Functional porphyrinic metal–organic framework as a new class of heterogeneous halogen–bond–donor catalyst. Angew. Chem., Int. Ed., 2021, 60(45), 24312-24317. https://doi.org/10.1002/anie.202111893

    Article  CAS  Google Scholar 

  14. M. Pintado-Sierra, A. M. Rasero-Almansa, A. Corma, M. Iglesias, and F. Sánchez. Bifunctional iridium-(2-aminoterephthalate)-Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction. J. Catal., 2013, 299, 137-145. https://doi.org/10.1016/j.jcat.2012.12.004

    Article  CAS  Google Scholar 

  15. D. N. Dybtsev and K. P. Bryliakov. Asymmetric catalysis using metal-organic frameworks. Coord. Chem. Rev., 2021, 437, 213845. https://doi.org/10.1016/j.ccr.2021.213845

    Article  CAS  Google Scholar 

  16. Y. Wu, X. Feng, Q. Zhai, H. Wang, H. Jiang, and Y. Ren. Metal–organic framework surface functionalization enhancing the activity and stability of palladium nanoparticles for carbon–halogen bond activation. Inorg. Chem., 2022, 61(18), 6995-7004. https://doi.org/10.1021/acs.inorgchem.2c00379

    Article  CAS  PubMed  Google Scholar 

  17. Y. Yang, H. F. Yao, F. G. Xi, and E. Q. Gao. Amino-functionalized Zr(IV) metal-organic framework as bifunctional acid-base catalyst for Knoevenagel condensation. J. Mol. Catal. A: Chem., 2014, 390, 198-205. https://doi.org/10.1016/j.molcata.2014.04.002

    Article  CAS  Google Scholar 

  18. X. Yu, A. A. Ryadun, A. S. Potapov, and V. P. Fedin. Ultra-low limit of luminescent detection of gossypol by terbium(III)-based metal-organic framework. J. Hazard. Mater., 2023, 452, 131289. https://doi.org/10.1016/j.jhazmat.2023.131289

    Article  CAS  PubMed  Google Scholar 

  19. P. A. Demakov, A. A. Ryadun, and V. P. Fedin. Zn(II) coordination polymer with π-stacked 4,4′-bipyridine dimers: Synthesis, structure and luminescent properties. Polyhedron, 2022, 219, 115793. https://doi.org/10.1016/j.poly.2022.115793

    Article  CAS  Google Scholar 

  20. Y. A. Yudina, P. A. Demakov, A. A. Ryadun, V. P. Fedin, and D. N. Dybtsev. Structures and luminescent properties of rare-earth metal–organic framework series with thieno[3,2b]thiophene-2,5-dicarboxylate. Crystals, 2022, 12(10), 1374. https://doi.org/10.3390/cryst12101374

    Article  CAS  Google Scholar 

  21. R.-X. Yao, X. Cui, X.-X. Jia, F.-Q. Zhang, and X.-M. Zhang. A luminescent zinc(II) metal–organic framework (MOF) with conjugated π-electron ligand for high iodine capture and nitro-explosive detection. Inorg. Chem., 2016, 55(18), 9270-9275. https://doi.org/10.1021/acs.inorgchem.6b01312

    Article  CAS  PubMed  Google Scholar 

  22. J. Zhu, P. Zhu, J. Mei, J. Xie, J. Guan, and K.-L. Zhang. Proton conduction and luminescent sensing property of two newly constructed positional isomer-dependent redox-active Mn(II)-organic frameworks. Polyhedron, 2021, 200, 115139. https://doi.org/10.1016/j.poly.2021.115139

    Article  CAS  Google Scholar 

  23. Y. Zhang, S. Yuan, G. Day, X. Wang, X. Yang, and H. C. Zhou. Luminescent sensors based on metal-organic frameworks. Coord. Chem. Rev., 2018, Vol. 354, 28-45. https://doi.org/10.1016/j.ccr.2017.06.007

    Article  CAS  Google Scholar 

  24. A. S. Poryvaev, A. A. Yazikova, D. M. Polyukhov, and M. V. Fedin. Ultrahigh selectivity of benzene/cyclohexane separation by ZIF-8 framework: Insights from spin-probe EPR spectroscopy. Microporous Mesoporous Mater., 2022, 330, 111564. https://doi.org/10.1016/j.micromeso.2021.111564

    Article  CAS  Google Scholar 

  25. V. A. Dubskikh, A. A. Kolosov, A. A. Lysova, D. G. Samsonenko, A. N. Lavrov, K. A. Kovalenko, D. N. Dybtsev, and V. P. Fedin. A series of metal–organic frameworks with 2,2′-bipyridyl derivatives: synthesis vs. structure relationships, adsorption, and magnetic studies. Molecules, 2023, 28(5), 2139. https://doi.org/10.3390/molecules28052139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. T. Ghanbari, F. Abnisa, and W. M. A. Wan Daud. A review on production of metal organic frameworks (MOF) for CO2 adsorption. Sci. Total Environ., 2020, 707, 135090. https://doi.org/10.1016/j.scitotenv.2019.135090

    Article  CAS  PubMed  Google Scholar 

  27. A. A. Sapianik, K. A. Kovalenko, D. G. Samsonenko, M. O. Barsukova, D. N. Dybtsev, and V. P. Fedin. Exceptionally effective benzene/cyclohexane separation using a nitro-decorated metal–organic framework. Chem. Commun., 2020, 56(59), 8241-8244. https://doi.org/10.1039/d0cc03227a

    Article  CAS  Google Scholar 

  28. F. Niekiel, J. Lannoeye, H. Reinsch, A. S. Munn, A. Heerwig, I. Zizak, S. Kaskel, R. I. Walton, D. de Vos, P. Llewellyn, A. Lieb, G. Maurin, and N. Stock. Conformation-controlled sorption properties and breathing of the aliphatic Al-MOF [Al(OH)(CDC)]. Inorg. Chem., 2014, 53(9), 4610-4620. https://doi.org/10.1021/ic500288w

    Article  CAS  PubMed  Google Scholar 

  29. H. Yang, X. W. He, F. Wang, Y. Kang, and J. Zhang. Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. J. Mater. Chem., 2012, 22(41), 21849-21851. https://doi.org/10.1039/c2jm35602c

    Article  CAS  Google Scholar 

  30. P. A. Demakov, D. G. Samsonenko, D. N. Dybtsev, and V. P. Fedin. Zinc(II) metal–organic frameworks with 1,4-diazabicyclo[2.2.2]octane N,N′-dioxide: control of the parameters of the cationic porous framework and optical properties. Russ. Chem. Bull., 2022, 71(1), 83-90. https://doi.org/10.1007/s11172-022-3380-y

    Article  CAS  Google Scholar 

  31. H.-P. Li, Z.-D. Dou, Y. Xiao, G.-J. Fan, D.-C. Pan, M.-C. Hu, and Q.-G. Zhai. Rational regulation of acetylene adsorption and separation for ultra-microporous copper-1,2,4-triazolate frameworks by halogen hydrogen bonds. Nanoscale, 2022, 14(48), 18200-18208. https://doi.org/10.1039/d2nr04187a

    Article  CAS  PubMed  Google Scholar 

  32. A. M. Pak, E. N. Zakharchenko, A. A. Korlyukov, and V. V. Novikov. Antibacterial films of composite materials based on the biocompatible metal–organic framework MOF-5 and hydrocolloids. Russ. J. Coord. Chem., 2022, 48(4), 195-200. https://doi.org/10.1134/s1070328422030022

    Article  CAS  Google Scholar 

  33. D. N. Dybtsev, A. A. Sapianik, and V. P. Fedin. Pre-synthesized secondary building units in the rational synthesis of porous coordination polymers. Mendeleev Commun., 2017, 27(4), 321-331. https://doi.org/10.1016/j.mencom.2017.07.001

    Article  CAS  Google Scholar 

  34. A. V. Gurbanov, M. L. Kuznetsov, A. Karmakar, V. A. Aliyeva, K. T. Mahmudov, and A. J. L. Pombeiro. Halogen bonding in cadmium MOFs: its influence on the structure and on the nitroaldol reaction in aqueous medium. Dalton Trans., 2022, 51(3), 1019-1031. https://doi.org/10.1039/d1dt03755b

    Article  CAS  PubMed  Google Scholar 

  35. J. Dong, Q. Mo, Y. Wang, L. Jiang, L. Zhang, and C. Su. Ultrathin two-dimensional metal–organic framework nanosheets based on a halogen-substituted porphyrin ligand: Synthesis and Catalytic application in CO2 reductive amination. Chem. - Eur. J., 2022, 28(41). https://doi.org/10.1002/chem.202200555

    Article  Google Scholar 

  36. Y. Deng, C.-T. Hou, R. I. Walton, J. Tang, P. Zhu, K.-L. Zhang, and S. W. Ng. Preparation, structural diversity and characterization of a family of Cd(II)–organic frameworks. Dalton Trans., 2013, 42(34), 12468. https://doi.org/10.1039/c3dt51118a

    Article  CAS  PubMed  Google Scholar 

  37. S. Q. Zang, Y. J. Fan, J. Bin Li, H. W. Hou, and T. C. W. Mak. Halogen bonding in the assembly of coordination polymers based on 5-iodo-isophthalic acid. Cryst. Growth Des., 2011, 11(8), 3395-3405. https://doi.org/10.1021/cg200022j

    Article  CAS  Google Scholar 

  38. M.-M. Dong, L.-L. He, Y.-J. Fan, S.-Q. Zang, H.-W. Hou, and T. C. W. Mak. Seven copper coordination polymers based on 5-iodo-isophthalic acid: Halogen-related bonding and N-donor auxiliary ligands modulating effect. Cryst. Growth Des., 2013, 13(8), 3353-3364. https://doi.org/10.1021/cg400033s

    Article  CAS  Google Scholar 

  39. S.-Q. Zang, M.-M. Dong, Y.-J. Fan, H.-W. Hou, and T. C. W. Mak. Four cobaltic coordination polymers based on 5-iodo-isophthalic acid: Halogen-related interaction and solvent effect. Cryst. Growth Des., 2012, 12(3), 1239-1246. https://doi.org/10.1021/cg201257j

    Article  CAS  Google Scholar 

  40. K. L. Zhang, C. T. Hou, J. J. Song, Y. Deng, L. Li, S. W. Ng, and G. W. Diao. Temperature and auxiliary ligand-controlled supramolecular assembly in a series of Zn(II)-organic frameworks: Syntheses, structures and properties. CrystEngComm, 2012, 14(2), 590-600. https://doi.org/10.1039/c1ce05577a

    Article  CAS  Google Scholar 

  41. N. Ivan, V. Benin, and A. B. Morgan. Preparation of phosphonoterephthalic acids via palladium-catalyzed coupling of aromatic iodoesters. Synth. Commun., 2013, 43(13), 1831-1836. https://doi.org/10.1080/00397911.2012.673448

    Article  CAS  Google Scholar 

  42. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  43. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  44. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  45. M. P. Suh, H. J. Park, T. K. Prasad, and D.-W. Lim. Hydrogen storage in metal–organic frameworks. Chem. Rev., 2012, 112(2), 782-835. https://doi.org/10.1021/cr200274s

    Article  CAS  PubMed  Google Scholar 

  46. Y. Kim, R. Haldar, H. Kim, J. Koo, and K. Kim. The guest-dependent thermal response of the flexible MOF Zn2(BDC)2(DABCO). Dalton Trans., 2016, 45(10), 4187-4192. https://doi.org/10.1039/c5dt03710g

    Article  CAS  PubMed  Google Scholar 

  47. K. Uemura, Y. Yamasaki, F. Onishi, H. Kita, and M. Ebihara. Two-step adsorption on jungle-gym-type porous coordination polymers: Dependence on hydrogen-bonding capability of adsorbates, ligand-substituent effect, and temperature. Inorg. Chem., 2010, 49(21), 10133-10143. https://doi.org/10.1021/ic101517t

    Article  CAS  PubMed  Google Scholar 

  48. H. Kim, D. G. Samsonenko, S. Das, G. H. Kim, H. S. Lee, D. N. Dybtsev, E. A. Berdonosova, and K. Kim. Methane sorption and structural characterization of the sorption sites in Zn2(bdc)2(dabco) by single crystal X-ray crystallography. Chem. - Asian J., 2009, 4(6), 886-891. https://doi.org/10.1002/asia.200900020

    Article  CAS  PubMed  Google Scholar 

  49. H.-C. Lee, J. Hwang, U. Schilde, M. Antonietti, K. Matyjaszewski, and B. V. K. J. Schmidt. Toward ultimate control of radical polymerization: Functionalized metal–organic frameworks as a robust environment for metal-catalyzed polymerizations. Chem. Mater., 2018, 30(9), 2983-2994. https://doi.org/10.1021/acs.chemmater.8b00546

    Article  CAS  Google Scholar 

  50. I. Liepuoniute, C. M. Huynh, S. Perez-Estrada, Y. Wang, S. Khan, K. N. Houk, and M. A. Garcia-Garibay. Enhanced rotation by ground state destabilization in amphidynamic crystals of a dipolar 2,3-difluorophenylene rotator as established by solid state 2H NMR and dielectric spectroscopy. J. Phys. Chem. C, 2020, 124(28), 15391-15398. https://doi.org/10.1021/acs.jpcc.0c05314

    Article  CAS  Google Scholar 

  51. A. Bondi. Van der Waals volumes and radii. J. Phys. Chem., 1964, 68(3), 441-451. https://doi.org/10.1021/j100785a001

    Article  CAS  Google Scholar 

  52. Y.-L. Wei, X.-Y. Li, T.-T. Kang, S.-N. Wang, and S.-Q. Zang. A series of Ag–Cd hetero- and Ag homo-nuclear coordination polymers based on 5-iodo-isophthalic acid and N-donor ancillary ligands. CrystEngComm, 2014, 16(2), 223-230. https://doi.org/10.1039/c3ce41714j

    Article  CAS  Google Scholar 

  53. N.-N. Li, Y.-H. Zhang, and M.-L. Zhang. Syntheses, crystal structures, and properties of two novel coordination polymers: [Zn2(5-iipa)2(bpa)3]n and [Cd(5-iipa)(bpa)(CH3OH)]n. Synth. React. Inorg., Met. Nano-Met. Chem., 2015, 45(2), 298-303. https://doi.org/10.1080/15533174.2013.799196

    Article  CAS  Google Scholar 

  54. X. Zhang, L. Zhang, M.-J. Wang, and K.-L. Zhang. Synthesis, structure and characterization of two new metal–organic coordination polymers based on the ligand 5-iodobenzene-1,3-dicarboxylate. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(9), 776-782. https://doi.org/10.1107/s2053229615014655

    Article  CAS  Google Scholar 

  55. S. C. Chen, J. Qin, Z. H. Zhang, M. Hu, F. A. Sun, L. Liu, M. Y. He, and Q. Chen. Influence of solvent on the structures of two copper(II) coordination polymers with tetraiodoterephthalate: Syntheses, crystal structures, and properties. J. Coord. Chem., 2013, 66(11), 1924-1932. https://doi.org/10.1080/00958972.2013.794382

    Article  CAS  Google Scholar 

  56. A. S. Zaguzin, T. Sukhikh, M. N. Sokolov, V. P. Fedin, and S. A. Adonin. Zn(II) three-dimensional metal-organic frameworks based on 2,5-diiodoterephthalate and N,N linkers: Structures and features of sorption behavior. Inorganics, 2023, 11(5), 192. https://doi.org/10.3390/inorganics11050192

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (Project No. 21-73-20019) and the Ministry of Science and Higher Education of the Russian Federation (structural characterization of the samples, 121031700313-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Zaguzin.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 11, 118589.https://doi.org/10.26902/JSC_id118589

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaguzin, A.S., Bondarenko, M.A., Sukhikh, T.S. et al. Crystal Structures of Two Metal-Organic Frameworks Based on Zn(II) and 2,5-Diiodoterephthalate. J Struct Chem 64, 2157–2166 (2023). https://doi.org/10.1134/S0022476623110136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623110136

Keywords

Navigation