Skip to main content
Log in

Synthesis of a Novel Dinuclear Ruthenium(III) Ono Pincer Complex Containing a MM Bond: an XRD Study

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A novel dinuclear ruthenium(III) ONO pincer complex was synthesized from RuCl3·H2O and 2,6-pyridinedicarboxylic acid (H2pydc) in methanol by using triethylamine as a base. The single crystal XRD disclosed the crystalline nature of the complex that was found to be monoclinic, space group P121/c1, with unit cell dimensions a = 9.4603(7) Å, b = 16.4025(12) Å, c = 6.6844(5) Å, β = 91.839(2)°. The complex showed a rare transoid configuration ′Ru(μ-OMe)2(μ-O2CN)2Ru′ core along with monodentate aqua ligand coordination. To the best of our knowledge, this is a rare case of bridged dinuclear ruthenium complex (only a couple of reports) and the first one containing a pincer ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. J. M. Goldberg, L. M. Guard, G. W. Wong, D. F. Brayton, W. Kaminsky, K. I. Goldberg, and D. M. Heinekey. Preparation and reactivity of bimetallic (pincer) Ir complexes. Organometallics, 2020, 39(18), 3323-3334. https://doi.org/10.1021/acs.organomet.0c00403

    Article  CAS  Google Scholar 

  2. J. L. Wong, R. F. Higgins, I. Bhowmick, D. X. Cao, G. Szigethy, J. W. Ziller, M. P. Shores, and A. F. Heyduk. Bimetallic iron–iron and iron–zinc complexes of the redox-active ONO pincer ligand. Chem. Sci., 2016, 7(2), 1594-1599. https://doi.org/10.1039/c5sc03006d

    Article  CAS  PubMed  Google Scholar 

  3. H. Valdés, J. M. Germán-Acacio, G. van Koten, and D. Morales-Morales. Bimetallic complexes that merge metallocene and pincer-metal building blocks: synthesis, stereochemistry and catalytic reactivity. Dalton Trans., 2022, 51(5), 1724-1744. https://doi.org/10.1039/d1dt03870b

    Article  CAS  PubMed  Google Scholar 

  4. I. del Río, R. A. Gossage, M. Lutz, A. L. Spek, and G. van Koten. Reactivity of a binuclear Ru(II) N2-bridged complex towards phosphines: Facile access to novel mono and binuclear phosphorous derivatives. X-ray structural characterization of two unusual binuclear complexes containing ′pincer′ ligands: [{RuCl23-NN′N)}2. (μ-η2-P2)](NN′N=2,6-bis[(dimethylamino)methyl]pyridine; P2=1,3-bis[(diphenylphosphino)methyl]benzene or 1,3-bis(diphenylphosphino)propane). J. Organomet. Chem., 1999, 583(1/2), 69-79. https://doi.org/10.1016/s0022-328x(99)00105-9

    Article  Google Scholar 

  5. J. Peter, R. Nechikkattu, A. Mohan, A. Maria Thomas, and C.-S. Ha. Stimuli-responsive organic-inorganic mesoporous silica hybrids: A comprehensive review on synthesis and recent advances. Mater. Sci. Eng. B, 2021, 270, 115232. https://doi.org/10.1016/j.mseb.2021.115232

    Article  CAS  Google Scholar 

  6. H. A. Younus, N. Ahmad, W. Su, and F. Verpoort. Ruthenium pincer complexes: Ligand design and complex synthesis. Coord. Chem. Rev., 2014, 276, 112-152. https://doi.org/10.1016/j.ccr.2014.06.016

    Article  CAS  Google Scholar 

  7. A. Eizawa, S. Nishimura, K. Arashiba, K. Nakajima, and Y. Nishibayashi. Synthesis of ruthenium complexes bearing PCP-type pincer ligands and their application to direct synthesis of imines from amines and benzyl alcohol. Organometallics, 2018, 37(18), 3086-3092. https://doi.org/10.1021/acs.organomet.8b00465

    Article  CAS  Google Scholar 

  8. S. S. Rozenel and J. Arnold. Bimetallic ruthenium PNP pincer complex as a platform to model proposed intermediates in dinitrogen reduction to ammonia. Inorg. Chem., 2012, 51(18), 9730-9739. https://doi.org/10.1021/ic3010322

    Article  CAS  PubMed  Google Scholar 

  9. P. Jerome, S. G. Babu, and R. Karvembu. Structural effect of pincer Pd(II)–ONO complexes modified with acylthiourea on sizes of the in situ generated Pd nanoparticles during heck coupling reaction. Catal. Lett., 2021, 151(6), 1633-1645. https://doi.org/10.1007/s10562-020-03413-7

    Article  CAS  Google Scholar 

  10. P. Jerome, G. Kausalya, T. Daniel Thangadurai, and R. Karvembu. Green synthesis of CuO nanoflakes from copper pincer complex for effective N-arylation of benzimidazole. Catal. Commun., 2016, 75, 50-54. https://doi.org/10.1016/j.catcom.2015.11.018

    Article  CAS  Google Scholar 

  11. A. Castiñeiras, N. Fernández-Hermida, I. García-Santos, and L. Gómez-Rodríguez. Neutral NiII, PdII and PtII ONS-pincer complexes of 5-acetylbarbituric-4N-dimethylthiosemicarbazone: Synthesis, characterization and properties. Dalton Trans., 2012, 41(43), 13486-13495. https://doi.org/10.1039/c2dt31753b

    Article  CAS  PubMed  Google Scholar 

  12. Z. Cao, H. Qiao, and F. Zeng. Design, synthesis, and application of NNN pincer ligands possessing a remote hydroxyl group for ruthenium-catalyzed transfer hydrogenation of ketones. Organometallics, 2019, 38(4), 797-804. https://doi.org/10.1021/acs.organomet.8b00791

    Article  CAS  Google Scholar 

  13. P. Jerome, P. N. Sathishkumar, N. S. P. Bhuvanesh, and R. Karvembu. Towards phosphine-free Pd(II) pincer complexes for catalyzing Suzuki-Miyaura cross-coupling reaction in aqueous medium. J. Organomet. Chem., 2017, 845, 115-124. https://doi.org/10.1016/j.jorganchem.2017.03.045

    Article  CAS  Google Scholar 

  14. P. Jerome, S. Y. Arafath, J. Haribabu, N. S. P. Bhuvanesh, and R. Karvembu. Effect of 2-bromopyridine ancillary ligand in the catalysis of Pd(II)–NNN pincer complexes towards Suzuki-Miyaura cross-coupling reaction. ChemistrySelect, 2019, 4(7), 2237-2241. https://doi.org/10.1002/slct.201803893

    Article  CAS  Google Scholar 

  15. P. Jerome, N. S. P. Bhuvanesh, and R. Karvembu. Synthesis and crystal structure of a trinuclear nickel(II) ONO pincer complex [Ni(pydc)2]2[Ni(H2O)5]·2H2O·2(C6H15N). J. Struct. Chem., 2016, 57(3), 528-533. https://doi.org/10.1134/s002247661603015x

    Article  CAS  Google Scholar 

  16. P. Jerome, S. Y. Arafath, and S. G. Babu. Controlled green synthesis of polymer functionalized zinc oxide nanoparticles. Green Rep., 2020, 1(1). https://doi.org/10.36686/ariviyal.gr.2020.01.01.003

    Article  Google Scholar 

  17. M. E. O′Reilly and A. S. Veige. Trianionic pincer and pincer-type metal complexes and catalysts. Chem. Soc. Rev., 2014, 43(17), 6325-6369. https://doi.org/10.1039/c4cs00111g

    Article  CAS  PubMed  Google Scholar 

  18. C. Shalini, A. Vignesh, W. Kaminsky, and N. Dharmaraj. Mixed valent/geometry, linear, tetranuclear nickel complex bearing ONO pincer ligand exhibiting hitherto unknown ligation mode. Polyhedron, 2018, 143, 157-164. https://doi.org/10.1016/j.poly.2017.09.040

    Article  CAS  Google Scholar 

  19. FRAMBO, v. 4.1.05: Program for Data Collection on Area Detectors. Madison, WI, USA: Bruker-Nonius.

  20. APEX2: Program for Data Collection and Integration on Area Detectors. Madison, WI, USA: Bruker AXS, 2010.

  21. G. M. Sheldrick. SADABS, v. 2008/1: Program for Absorption Correction for Data from Area Detector Frames. Göttingen,Germany: University of Göttingen, 2008.

  22. G. M. Sheldrick. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64(1), 112-122. https://doi.org/10.1107/s0108767307043930

    Article  Google Scholar 

  23. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  24. L. Wang, L. Duan, D. Xiao, E. Wang, and C. Hu. Synthesis of novel copper compounds containing isonicotinic acid and/or 2,6-pyridinedicarboxylic acid: Third-order nonlinear optical properties. J. Coord. Chem., 2004, 57(13), 1079-1087. https://doi.org/10.1080/00958970412331281773

    Article  CAS  Google Scholar 

  25. P. Angaridis, F. A. Cotton, C. A. Murillo, D. Villagrán, and X. Wang. Paramagnetic precursors for supramolecular assemblies: Selective syntheses, crystal structures, and electrochemical and magnetic properties of Ru2(O2CMe)4–n(formamidinate)nCl complexes, n = 1-4. Inorg. Chem., 2004, 43(26), 8290-8300. https://doi.org/10.1021/ic049108w

    Article  CAS  PubMed  Google Scholar 

  26. E. G. Corkum, R. Wang, and M. A. S. Aquino. Compromising the metal–metal bond in diruthenium(II,III) tetraacetate: Reaction of [Ru2(μ-O2CMe)4(MeOH)2]+ with phosphines to form ′Ru(μ-O2CMe)2(μ-OMe)2Ru′ cores. Inorg. Chim. Acta, 2015, 424, 202-209. https://doi.org/10.1016/j.ica.2014.08.044

    Article  CAS  Google Scholar 

  27. K. Matsuya, S. Fukui, Y. Hoshino, and H. Nagao. A mixed-valence diruthenium complex, triply bridged by mixed-moieties of chloro and methoxo ligands. Dalton Trans., 2009, (38), 7876-7878. https://doi.org/10.1039/b912377f

    Article  PubMed  Google Scholar 

  28. D. A. Bardwell, L. Horsburgh, J. C. Jeffery, L. F. Joulié, M. D. Ward, I. Webster, and L. J. Yellowlees. Dinuclear alkoxide-bridged ruthenium(II) complexes with class III mixed-valence states: A structural and spectroelectrochemical study. J. Chem. Soc., Dalton Trans., 1996, (12), 2527-2531. https://doi.org/10.1039/dt9960002527

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Karvembu.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 11, 117721.https://doi.org/10.26902/JSC_id117721

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jerome, P., Swaminathan, S., Bhuvanesh, N.S.P. et al. Synthesis of a Novel Dinuclear Ruthenium(III) Ono Pincer Complex Containing a MM Bond: an XRD Study. J Struct Chem 64, 2082–2089 (2023). https://doi.org/10.1134/S0022476623110057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623110057

Keywords

Navigation