Skip to main content
Log in

Preparation of Model Rh–CeO2 Catalysts by Pulsed Laser Ablation in Liquid

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The powders of Rh and CeO2 are synthesized by pulsed laser ablation in liquid. The Rh–CeO2 model catalysts are prepared by the calcination of these powders in a wide temperature range from 450 °C to 1000 °C. The formation of individual and mixed (rhodium- and cerium-containing) phases with increasing temperature of catalyst calcination is studied by powder XRD and Raman spectroscopy. The redox properties of prepared catalysts are tested in a temperature-programmed reaction of CO reduction; their catalytic properties are studied on the example of CO oxidation. It is shown that the catalysts remain stable during catalytic tests due to the formation of a nano-heterophase system consisting of rhodium oxide (Rh2O3) and cerium oxide (CeO2) nanoparticles. The discovered high stability is most likely explained by the formation of the Rh3+–CeO2 species with the localization of Rh3+ ions in subsurface CeO2 layers due to the contacts between rhodium oxide and cerium oxide nanoparticles. Introducing Rh3+ ions into Ce4+ positions of the CeO2 lattice distorts the cerium oxide structure and leads to the formation of active oxygen species interacting with CO at low temperatures. The catalysts are shown to preserve high activity in the reaction of low-temperature CO oxidation even after the calcination at 1000 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. M. Shelef and G. W. Graham. Why rhodium in automotive three-way catalysts? Catal. Rev. Sci. Eng., 1994, 36, 433-457. https://doi.org/10.1080/01614949408009468

    Article  CAS  Google Scholar 

  2. W. Alsalahi and A. M. Trzeciak. Rhodium-catalyzed hydroformylation under green conditions: Aqueous/organic biphasic, “on water”, solventless and Rh nanoparticle based systems. Coord. Chem. Rev., 2021, 430, 213732. https://doi.org/10.1016/j.ccr.2020.213732

    Article  CAS  Google Scholar 

  3. K. Shimura and T. Fujitani. Effects of rhodium catalyst support and particle size on dry reforming of methane at moderate temperatures. Mol. Catal., 2021, 509, 111623. https://doi.org/10.1016/j.mcat.2021.111623

    Article  CAS  Google Scholar 

  4. M. Alisha, R. M. Philip, and G. Anilkumar. An overview of rhodium-catalysed heck type reactions. J. Organomet. Chem., 2022, 959, 122207. https://doi.org/10.1016/j.jorganchem.2021.122207

    Article  CAS  Google Scholar 

  5. L. Zhu, C. Li, Q. Yun, S. Han, Y. Lv, Q. Lu, and J. Chen. Recent advances of Rh-based intermetallic nanomaterials for catalytic applications. Chin. Chem. Lett., 2023, 108515. https://doi.org/10.1016/j.cclet.2023.108515

    Article  CAS  Google Scholar 

  6. M. V. Twigg. Progress and future challenges in controlling automotive exhaust gas emissions. Appl. Catal., B, 2007, 70, 2-15. https://doi.org/10.1016/j.apcatb.2006.02.029

    Article  CAS  Google Scholar 

  7. R. J. Farrauto, M. Deeba, and S. Alerasool. Gasoline automobile catalysis and its historical journey to cleaner air. Nat. Catal., 2019, 2, 603-613. https://doi.org/10.1038/s41929-019-0312-9

    Article  CAS  Google Scholar 

  8. M. Zammit, C. Dimaggio, C. Kim, C. Lambert, G. Muntean, C. Peden, J. Parks, and K. Howden. Future automotive aftertreatment solutions: the challenge workshop report (No. PNNL-22815). Richland, Washington, USA: Pacific Northwest National Lab.(PNNL), 2013. https://doi.org/10.2172/1097340

    Article  Google Scholar 

  9. C. K. Lambert. Current state of the art and future needs for automotive exhaust catalysis. Nat. Catal., 2019, 2, 554-557. https://doi.org/10.1038/s41929-019-0303-x

    Article  CAS  Google Scholar 

  10. T. Montini, M. Melchionna, M. Monai, and P. Fornasiero. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev., 2016, 116, 5987-6041. https://doi.org/10.1021/acs.chemrev.5b00603

    Article  CAS  PubMed  Google Scholar 

  11. M. Kurnatowska and L. Kepinski. Structure and thermal stability of nanocrystalline Ce1–xRhxO2–y in reducing and oxidizing atmosphere. Mater. Res. Bull., 2013, 48, 852-862. https://doi.org/10.1016/j.materresbull.2012.11.076

    Article  CAS  Google Scholar 

  12. E. A. Derevyannikova, T. Y. Kardash, L. S. Kibis, E. M. Slavinskaya, V. A. Svetlichnyi, O. A. Stonkus, A. S. Ivanova, and A. I. Boronin. The structure and catalytic properties of Rh-doped CeO2 catalysts. Phys. Chem. Chem. Phys., 2017, 19, 31883-31897. https://doi.org/10.1039/C7CP06573F

    Article  CAS  PubMed  Google Scholar 

  13. K. A. Ledwa, L. Kępiński, and M. Pawlyta. Thermal stability and propane combustion activity of RhxCe1–xO2–y nanoparticles deposited on functionalized alumina. Catal. Sci. Technol., 2019, 9, 4633-4644. https://doi.org/10.1039/C9CY01316D

    Article  CAS  Google Scholar 

  14. E. A. Fedorova, T. Y. Kardash, L. S. Kibis, O. A. Stonkus, E. M. Slavinskaya, V. A. Svetlichnyi, S. Pollastri, and A. I. Boronin. Unraveling the low-temperature activity of Rh–CeO2 catalysts in CO oxidation: Probing the local structure and redox transformation of Rh3+ species. Phys. Chem. Chem. Phys., 2023, 25, 2862-2874. https://doi.org/10.1039/D2CP04503F

    Article  CAS  PubMed  Google Scholar 

  15. S. Imamura, T. Yamashita, R. Hamada, Y. Saito, Y. Nakao, N. Tsuda, and C. Kaito, Strong interaction between rhodium and ceria. J. Mol. Catal. A: Chem., 1998, 129, 249-256. https://doi.org/10.1016/S1381-1169(97)00183-0

    Article  CAS  Google Scholar 

  16. A. Gayen, K. R. Priolkar, P. R. Sarode, V. Jayaram, M. S. Hegde, G. N. Subbanna, and S. Emura. Ce1–xRhxO2–δ solid solution formation in combustion-synthesized Rh/CeO2 catalyst studied by XRD, TEM, XPS, and EXAFS. Chem. Mater., 2004, 16, 2317-2328. https://doi.org/10.1021/cm040126l

    Article  CAS  Google Scholar 

  17. L. S. Kibis, T. Y. Kardash, E. A. Derevyannikova, O. A. Stonkus, E. M. Slavinskaya, V. A. Svetlichnyi, and A. I. Boronin. Redox and catalytic properties of RhxCe1–xO2–δ solid solution. J. Phys. Chem. C, 2017, 121, 26925-26938. https://doi.org/10.1021/acs.jpcc.7b09983

    Article  CAS  Google Scholar 

  18. H. Jeong, G. Lee, B. Kim, J. Bae, J. W. Han, and H. Lee. Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc., 2018, 140, 9558-9565. https://doi.org/10.1021/jacs.8b04613

    Article  CAS  PubMed  Google Scholar 

  19. L. S. Kibis, D. A. Svintsitskiy, E. A. Derevyannikova, T. Yu. Kardash, E. M. Slavinskaya, O. A. Stonkus, V. A. Svetlichnyi, and A. I. Boronin. From highly dispersed Rh3+ to nanoclusters and nanoparticles: Probing the low-temperature NO + CO activity of Rh-doped CeO2 catalysts. Appl. Surf. Sci., 2019, 493, 1055-1066. https://doi.org/10.1016/j.apsusc.2019.07.043

    Article  CAS  Google Scholar 

  20. K. Khivantsev, C. G. Vargas, J. Tian, L. Kovarik, N. R. Jaegers, J. Szanyi, and Y. Wang. Economizing on precious metals in three-way catalysts: Thermally stable and highly active single-atom rhodium on ceria for NO abatement under dry and industrially relevant conditions. Angew. Chem., Int. Ed., 2021, 60, 391-398. https://doi.org/10.1002/anie.202010815

    Article  CAS  Google Scholar 

  21. K. Sevcikova, V. Nehasil, M. Vorokhta, S. Haviar, V. Matolín, I. Matolínová, K. Mašek, I. Píš, K. Kobayashi, M. Kobata, T. Nagata, Y. Matsushita, and H. Yoshikawa. Altering properties of cerium oxide thin films by Rh doping. Mater. Res. Bull., 2015, 67, 5-13. https://doi.org/10.1016/j.materresbull.2015.02.059

    Article  CAS  Google Scholar 

  22. H. Yoshida, K. Koizumi, M. Boero, M. Ehara, S. Misumi, A. Matsumoto, Y. Kuzuhara, T. Sato, J. Ohyama, and M. Machida. High turnover frequency CO–NO reactions over Rh overlayer catalysts: A comparative study using Rh nanoparticles. J. Phys. Chem. C, 2019, 123, 6080-6089. https://doi.org/10.1021/acs.jpcc.9b00383

    Article  CAS  Google Scholar 

  23. E. D. Fakhrutdinova, A. V. Shabalina, M. A. Gerasimova, A. L. Nemoykina, O. V. Vodyankina, and V. A. Svetlichnyi. Highly defective dark nano titanium dioxide: Preparation via pulsed laser ablation and application. Materials, 2020, 13, 2054. https://doi.org/10.3390/ma13092054

    Article  CAS  PubMed Central  Google Scholar 

  24. A. Wazeer, A. Das, A. Sinha, and A. Karmakar. Nanomaterials synthesis via laser ablation in liquid: A review. JInst. Eng. (India): Ser. D, 2022, 104, 413-426. https://doi.org/10.1007/s40033-022-00370-w

    Article  Google Scholar 

  25. E. M. Slavinskaya, T. Y. Kardash, O. A. Stonkus, R. V. Gulyaev, I. N. Lapin, V. A. Svetlichnyi, and A. I. Boronin. Metal-support interaction in Pd/CeO2 model catalysts for CO oxidation: From pulsed laser-ablated nanoparticles to highly active state of the catalyst. Catal. Sci. Technol., 2016, 6, 6650-6666. https://doi.org/10.1039/c6cy00319b

    Article  CAS  Google Scholar 

  26. E. M. Slavinskaya, A. I. Stadnichenko, V. V. Muravyov, T. Y. Kardash, E. A. Derevyannikova, V. I. Zaikovskii, O. A. Stonkus, I. N. Lapin, V. A. Svetlichnyi, and A. I. Boronin. Transformation of a Pt–CeO2 mechanical mixture of pulsed-laser-ablated nanoparticles to a highly active catalyst for carbon monoxide oxidation. ChemCatChem, 2018, 10, 2232-2247. https://doi.org/10.1002/cctc.201702050

    Article  CAS  Google Scholar 

  27. A. I. Stadnichenko, E. M. Slavinskaya, E. A. Fedorova, D. A. Goncharova, V. I. Zaikovskii, T. Y. Kardash, V. A. Svetlichnyi, and A. I. Boronin. Activation of Au–CeO2 composites prepared by pulsed laser ablation in the reaction of low-temperature CO oxidation. J. Struct. Chem., 2021, 62, 1918-1934. https://doi.org/10.1134/S0022476621120118

    Article  CAS  Google Scholar 

  28. E. M. Slavinskaya, A. V. Zadesenets, O. A. Stonkus, A. I. Stadnichenko, A. V. Shchukarev, Y. V. Shubin, S. V. Korenev, and A. I. Boronin. Thermal activation of Pd/CeO2–SnO2 catalysts for low-temperature CO oxidation. Appl. Catal., B, 2020, 277, 119275. https://doi.org/10.1016/j.apcatb.2020.119275

    Article  CAS  Google Scholar 

  29. V. A. Svetlichny and I. N. Lapin. Poluchenie nanochastits CeO2 metodom lazernoi ablyatsii ob′emnykh mishenei metallicheskogo tseriya v zhidkosti (Production of CeO2 nanoparticles by laser ablation of volumetric targets of metallic cerium in liquid). Izv. Vyssh. Uchebn. Zaved., Fiz., 2015, 55, 106-112.

  30. M. Romeo, K. Bak, J. El Fallah, F. Le Normand, and L. Hilaire. XPS study of the reduction of cerium dioxide. Surf. Interface Anal., 1993, 20, 508-512. https://doi.org/10.1002/sia.740200604

    Article  CAS  Google Scholar 

  31. J. W. M. Biesterbos and J. Hornstra. The crystal structure of the high-temperature, low-pressure form of Rh2O3. JLess Common Met., 1973, 30, 121-125. https://doi.org/10.1016/0022-5088(73)90013-1

    Article  CAS  Google Scholar 

  32. A. Wold, R. J. Arnott, and W. J. Croft. The reaction of rare earth oxides with a high temperature form of rhodium(III) oxide. Inorg. Chem., 1963, 2, 972-974. https://doi.org/10.1021/ic50009a023.

    Article  CAS  Google Scholar 

  33. S. Hosokawa, M. Taniguchi, K. Utani, H. Kanai, and S. Imamura. Affinity order among noble metals and CeO2. Appl. Catal., A, 2005, 289, 115-120. https://doi.org/10.1016/j.apcata.2005.04.048

    Article  CAS  Google Scholar 

  34. S. Askrabic, Z. Dohcevic-Mitrovic, A. Kremenovic, N. Lazarevic, V. Kahlenberg, and Z. V Popovic. Oxygen vacancy-induced microstructural changes of annealed CeO2–x nanocrystals. J. Raman Spectrosc., 2012, 43, 76-81. https://doi.org/10.1002/jrs.2987

    Article  CAS  Google Scholar 

  35. T. Taniguchi, T. Watanabe, N. Sugiyama, A. K. Subramani, H. Wagata, N. Matsushita, and M. Yoshimura. Identifying defects in ceria-based nanocrystals by UV resonance Raman spectroscopy. J. Phys. Chem. C, 2009, 113, 19789-19793. https://doi.org/10.1021/jp9049457

    Article  CAS  Google Scholar 

  36. L. Li, F. Chen, J.-Q. Lu, and M.-F. Luo. Study of defect sites in Ce1–xMxO2–δ (x = 0.2) solid solutions using Raman spectroscopy. J. Phys. Chem. A, 2011, 115, 7972-7977. https://doi.org/10.1021/jp203921m

    Article  CAS  PubMed  Google Scholar 

  37. S. Musić, A. Šarić, S. Popović, and M. Ivanda. Formation and characterisation of nanosize α-Rh2O3 particles. JMol. Struct., 2009, 924-926, 221-224. https://doi.org/10.1016/j.molstruc.2008.10.017

    Article  CAS  Google Scholar 

  38. W. H. Weber, R. J. Baird, and G. W. Graham. Raman investigation of palladium oxide, rhodium sesquioxide and palladium rhodium dioxide. J. Raman Spectrosc., 1988, 19, 239-244. https://doi.org/10.1002/jrs.1250190404

    Article  CAS  Google Scholar 

  39. O. A. Stonkus, A. V. Zadesenets, E. M. Slavinskaya, A. I. Stadnichenko, V. A. Svetlichnyi, Y. V. Shubin, S. V. Korenev, and A. I. Boronin. Pd/CeO2–SnO2 catalysts with varying tin content: Promotion of catalytic properties and structure modification. Catal. Commun., 2022, 172, 106554. https://doi.org/10.1016/j.catcom.2022.106554

    Article  CAS  Google Scholar 

  40. L. Marot, D. Mathys, G. De Temmerman, and P. Oelhafen. Characterization of sub-stoichiometric rhodium oxide deposited by magnetron sputtering. Surf. Sci., 2008, 602, 3375-3380. https://doi.org/10.1016/j.susc.2008.09.012

    Article  CAS  Google Scholar 

  41. A. A. Tolia, R. J. Smiley, W. N. Delgass, C. G. Takoudis, and M. J. Weaver. Surface oxidation of rhodium at ambient pressures as probed by surface-enhanced Raman and X-ray photoelectron spectroscopies. J. Catal., 1994, 150, 56-70. https://doi.org/10.1006/jcat.1994.1322

    Article  CAS  Google Scholar 

  42. L. S. Kibis, A. I. Stadnichenko, S. V. Koscheev, V. I. Zaikovskii, and A. I. Boronin. XPS study of nanostructured rhodium oxide film comprising Rh4+ species. J. Phys. Chem. C, 2016, 120, 19142-19150. https://doi.org/10.1021/acs.jpcc.6b05219

    Article  CAS  Google Scholar 

  43. M. Kurnatowska, M. E. Schuster, W. Mista, and L. Kepinski. Self-regenerative property of nanocrystalline Ce0.89M0.11O2–y (M = Pd, Rh) mixed oxides. ChemCatChem, 2014, 6, 3125-3131. https://doi.org/10.1002/cctc.201402480

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Ministry of Science and Higher Education of the Russian Federation within the State Assignment for BIC SB RAS (project No. AAAA-A21-121011390053-4). The TEM study was conducted using the equipment of the Center of Collective Use “National Center of Catalyst Research”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Kibis.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 11, 118600.https://doi.org/10.26902/JSC_id118600

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kibis, L.S., Krotova, A.I., Fedorova, E.A. et al. Preparation of Model Rh–CeO2 Catalysts by Pulsed Laser Ablation in Liquid. J Struct Chem 64, 2187–2199 (2023). https://doi.org/10.1134/S0022476623110161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623110161

Keywords

Navigation