Skip to main content
Log in

Management des akuten Koronarsyndroms

ESC-Leitlinie 2023

Management of acute coronary syndrome

ESC guidelines 2023

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die neuen Leitlinien der European Society of Cardiology (ESC) zum Management des akuten Koronarsyndroms (ACS) von 2023 umfassen sowohl Neuerungen der Leitlinie zum ST-Strecken-Hebungs-Myokardinfarkt (STEMI) als auch zum akuten Koronarsyndrom ohne ST-Strecken-Hebung (NSTE-ACS). Damit wurden die vormals getrennten Leitlinien von 2017 bzw. 2020 überarbeitet und zusammengefasst. Dabei werden die Themen Diagnostik, Akutmanagement, antithrombotische Therapie, außerklinischer Herzstillstand und kardiogener Schock, invasive Strategien sowie die Langzeittherapie behandelt. Die Neuerungen gegenüber älteren Leitlinien betreffen unter anderem den Empfehlungsgrad zum Zeitpunkt der invasiven Diagnostik beim akuten Koronarsyndrom ohne ST-Hebungen (NSTE-ACS), das Vorgehen der Revaskularisation bei koronarer Mehrgefäßerkrankung sowie alternative Regime der antithrombotischen Therapie bei Patienten mit hohem Blutungsrisiko.

Abstract

The new guidelines of the European Society of Cardiology (ESC) on the management of acute coronary syndrome (ACS) in 2023 encompass updates for both the guidelines pertaining to ST elevation myocardial infarction (STEMI) and acute coronary syndrome without ST segment elevation (NSTE-ACS). The previously separated guidelines from 2017 and 2020 were therefore revised and summarized. These guidelines address various topics, including diagnostics, acute management, antithrombotic treatment, out-of-hospital cardiac arrest, cardiogenic shock, invasive strategies, and long-term treatment. The notable updates compared to earlier guidelines address the recommendation regarding the timing of invasive diagnostics in NSTE-ACS (Non-ST elevation acute coronary syndrome), the procedure of revascularization in multivessel coronary artery disease and alternative regimens for antithrombotic treatment in patients with a high risk of bleeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Byrne RA, Rossello X, Coughlan JJ et al (2023) 2023 ESC Guidelines for the management of acute coronary syndromes. Eur Heart J 44(38):3720–3826

    Article  PubMed  Google Scholar 

  2. Thygesen K, Alpert JS, Jaffe AS et al (2018) Fourth universal definition of myocardial infarction (2018). Circulation 138(20):e618–e651

    Article  PubMed  Google Scholar 

  3. Chew DP, Lambrakis K, Blyth A et al (2019) A Randomized Trial of a 1-Hour Troponin T Protocol in Suspected Acute Coronary Syndromes: The Rapid Assessment of Possible Acute Coronary Syndrome in the Emergency Department With High-Sensitivity Troponin T Study (RAPID-TnT). Circulation 140(19):1543–1556

    Article  PubMed  Google Scholar 

  4. Stoyanov KM, Hund H, Biener M et al (2020) RAPID-CPU: a prospective study on implementation of the ESC 0/1-hour algorithm and safety of discharge after rule-out of myocardial infarction. Eur Heart J Acute Cardiovasc Care 9(1):39–51

    Article  PubMed  Google Scholar 

  5. Twerenbold R, Costabel JP, Nestelberger T et al (2019) Outcome of applying the ESC 0/1-hour algorithm in patients with suspected myocardial infarction. J Am Coll Cardiol 74(4):483–494

    Article  PubMed  Google Scholar 

  6. Kite TA, Kurmani SA, Bountziouka V et al (2022) Timing of invasive strategy in non-ST-elevation acute coronary syndrome: a meta-analysis of randomized controlled trials. Eur Heart J 43(33):3148–3161

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jobs A, Mehta SR, Montalescot G et al (2017) Optimal timing of an invasive strategy in patients with non-ST-elevation acute coronary syndrome: a meta-analysis of randomised trials. Lancet 390(10096):737–746

    Article  PubMed  Google Scholar 

  8. Wiviott SD, Braunwald E, McCabe CH et al (2007) Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 357(20):2001–2015

    Article  CAS  PubMed  Google Scholar 

  9. Wallentin L, Becker RC, Budaj A et al (2009) Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 361(11):1045–1057

    Article  CAS  PubMed  Google Scholar 

  10. Schupke S, Neumann FJ, Menichelli M et al (2019) Ticagrelor or prasugrel in patients with acute coronary syndromes. N Engl J Med 381(16):1524–1534

    Article  CAS  PubMed  Google Scholar 

  11. Koul S, Smith JG, Götberg M et al (2018) No benefit of ticagrelor pretreatment compared with treatment during percutaneous coronary intervention in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Circ Cardiovasc Interv 11(3):e5528

    Article  CAS  PubMed  Google Scholar 

  12. Montalescot G, van ’t Hof AW, Lapostolle F et al (2014) Prehospital ticagrelor in ST-segment elevation myocardial infarction. N Engl J Med 371(11):1016–1027

    Article  PubMed  Google Scholar 

  13. Tarantini G, Mojoli M, Varbella F et al (2020) Timing of oral P2Y(12) inhibitor administration in patients with non-ST-segment elevation acute coronary syndrome. J Am Coll Cardiol 76(21):2450–2459

    Article  CAS  PubMed  Google Scholar 

  14. Palmerini T, Della Riva D, Benedetto U et al (2017) Three, six, or twelve months of dual antiplatelet therapy after DES implantation in patients with or without acute coronary syndromes: an individual patient data pairwise and network meta-analysis of six randomized trials and 11 473 patients. Eur Heart J 38(14):1034–1043

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hahn JY, Song YB, Oh JH et al (2018) 6‑month versus 12-month or longer dual antiplatelet therapy after percutaneous coronary intervention in patients with acute coronary syndrome (SMART-DATE): a randomised, open-label, non-inferiority trial. Lancet 391(10127):1274–1284

    Article  PubMed  Google Scholar 

  16. Kedhi E, Fabris E, van der Ent M et al (2018) Six months versus 12 months dual antiplatelet therapy after drug-eluting stent implantation in ST-elevation myocardial infarction (DAPT-STEMI): randomised, multicentre, non-inferiority trial. BMJ 363:k3793

    Article  PubMed  PubMed Central  Google Scholar 

  17. De Luca G, Damen SA, Camaro C et al (2019) Final results of the randomised evaluation of short-term dual antiplatelet therapy in patients with acute coronary syndrome treated with a new-generation stent (REDUCE trial). EuroIntervention 15(11):e990–e998

    Article  PubMed  Google Scholar 

  18. Hahn JY, Song YB, Oh JH et al (2019) Effect of P2Y12 inhibitor monotherapy vs dual antiplatelet therapy on cardiovascular events in patients undergoing percutaneous coronary intervention: the SMART-CHOICE randomized clinical trial. JAMA 321(24):2428–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mehran R, Baber U, Sharma SK et al (2019) Ticagrelor with or without aspirin in high-risk patients after PCI. N Engl J Med 381(21):2032–2042

    Article  CAS  PubMed  Google Scholar 

  20. Watanabe H, Domei T, Morimoto T et al (2019) Effect of 1‑month dual antiplatelet therapy followed by clopidogrel vs 12-month dual antiplatelet therapy on cardiovascular and bleeding events in patients receiving PCI: the STOPDAPT‑2 randomized clinical trial. JAMA 321(24):2414–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vranckx P, Valgimigli M, Jüni P et al (2018) Ticagrelor plus aspirin for 1 month, followed by ticagrelor monotherapy for 23 months vs aspirin plus clopidogrel or ticagrelor for 12 months, followed by aspirin monotherapy for 12 months after implantation of a drug-eluting stent: a multicentre, open-label, randomised superiority trial. Lancet 392(10151):940–949

    Article  CAS  PubMed  Google Scholar 

  22. Baber U, Dangas G, Angiolillo DJ et al (2020) Ticagrelor alone vs. ticagrelor plus aspirin following percutaneous coronary intervention in patients with non-ST-segment elevation acute coronary syndromes: TWILIGHT-ACS. Eur Heart J 41(37):3533–3545

    Article  CAS  PubMed  Google Scholar 

  23. Kim BK, Hong SJ, Cho YH et al (2020) Effect of ticagrelor monotherapy vs ticagrelor with aspirin on major bleeding and cardiovascular events in patients with acute coronary syndrome: the TICO randomized clinical trial. JAMA 323(23):2407–2416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Watanabe H, Morimoto T, Natsuaki M et al (2022) Comparison of clopidogrel monotherapy after 1 to 2 months of dual antiplatelet therapy with 12 months of dual antiplatelet therapy in patients with acute coronary syndrome: the STOPDAPT‑2 ACS randomized clinical trial. JAMA Cardiol 7(4):407–417

    Article  PubMed  PubMed Central  Google Scholar 

  25. Valgimigli M, Frigoli E, Heg D et al (2021) Dual antiplatelet therapy after PCI in patients at high bleeding risk. N Engl J Med 385(18):1643–1655

    Article  CAS  PubMed  Google Scholar 

  26. Giustino G, Mehran R, Dangas GD et al (2017) Characterization of the average daily Ischemic and bleeding risk after primary PCI for STEMI. J Am Coll Cardiol 70(15):1846–1857

    Article  PubMed  Google Scholar 

  27. Sibbing D, Aradi D, Jacobshagen C et al (2017) Guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS): a randomised, open-label, multicentre trial. Lancet 390(10104):1747–1757

    Article  CAS  PubMed  Google Scholar 

  28. Claassens DMF, Vos GJA, Bergmeijer TO et al (2019) A genotype-guided strategy for oral P2Y12 inhibitors in primary PCI. N Engl J Med 381(17):1621–1631

    Article  CAS  PubMed  Google Scholar 

  29. Cuisset T, Deharo P, Quilici J et al (2017) Benefit of switching dual antiplatelet therapy after acute coronary syndrome: the TOPIC (timing of platelet inhibition after acute coronary syndrome) randomized study. Eur Heart J 38(41):3070–3078

    Article  CAS  PubMed  Google Scholar 

  30. Kim CJ, Park MW, Kim MC et al (2021) Unguided de-escalation from ticagrelor to clopidogrel in stabilised patients with acute myocardial infarction undergoing percutaneous coronary intervention (TALOS-AMI): an investigator-initiated, open-label, multicentre, non-inferiority, randomised trial. Lancet 398(10308):1305–1316

    Article  CAS  PubMed  Google Scholar 

  31. Shoji S, Kuno T, Fujisaki T et al (2021) De-escalation of dual antiplatelet therapy in patients with acute coronary syndromes. J Am Coll Cardiol 78(8):763–777

    Article  CAS  PubMed  Google Scholar 

  32. Laudani C, Greco A, Occhipinti G et al (2022) Short duration of DAPT versus de-escalation after percutaneous coronary intervention for acute coronary syndromes. JACC Cardiovasc Interv 15(3):268–277

    Article  PubMed  Google Scholar 

  33. Smits PC, Frigoli E, Tijssen J et al (2021) Abbreviated antiplatelet therapy in patients at high bleeding risk with or without oral anticoagulant therapy after coronary stenting: an open-label, randomized, controlled trial. Circulation 144(15):1196–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Patterson T, Perkins GD, Hassan Y et al (2018) Temporal trends in identification, management, and clinical outcomes after out-of-hospital cardiac arrest: insights from the myocardial Ischaemia national audit project database. Circ Cardiovasc Interv 11(6):e5346

    Article  PubMed  Google Scholar 

  35. Byrne R, Constant O, Smyth Y et al (2008) Multiple source surveillance incidence and aetiology of out-of-hospital sudden cardiac death in a rural population in the West of Ireland. Eur Heart J 29(11):1418–1423

    Article  PubMed  Google Scholar 

  36. Kroupa J, Knot J, Ulman J et al (2017) Characteristics and survival determinants in patients after out-of-hospital cardiac arrest in the era of 24/7 coronary intervention facilities. Heart Lung Circ 26(8):799–807

    Article  PubMed  Google Scholar 

  37. Lemkes JS, Janssens GN, van der Hoeven NW et al (2020) Coronary angiography after cardiac arrest without ST segment elevation: one-year outcomes of the COACT randomized clinical trial. JAMA Cardiol 5(12):1358–1365

    Article  PubMed  Google Scholar 

  38. Desch S, Freund A, Akin I et al (2021) Angiography after out-of-hospital cardiac arrest without ST-segment elevation. N Engl J Med 385(27):2544–2553

    Article  PubMed  Google Scholar 

  39. Dankiewicz J, Cronberg T, Lilja G et al (2021) Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med 384(24):2283–2294

    Article  PubMed  Google Scholar 

  40. Hochman JS, Sleeper LA, Webb JG et al (1999) Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK investigators. Should we Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. N Engl J Med 341(9):625–634

    Article  CAS  PubMed  Google Scholar 

  41. Thiele H, Zeymer U, Neumann F‑J et al (2012) Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 367(14):1287–1296

    Article  CAS  PubMed  Google Scholar 

  42. Ostadal P, Rokyta R, Karasek J et al (2023) Extracorporeal membrane oxygenation in the therapy of cardiogenic shock: results of the ECMO-CS randomized clinical trial. Circulation 147(6):454–464

    Article  CAS  PubMed  Google Scholar 

  43. Thiele H, Zeymer U, Akin I et al (2023) Extracorporeal life support in infarct-related cardiogenic shock. N Engl J Med

  44. Valgimigli M, Gagnor A, Calabró P et al (2015) Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: a randomised multicentre trial. Lancet 385(9986):2465–2476

    Article  PubMed  Google Scholar 

  45. Jolly SS, Yusuf S, Cairns J et al (2011) Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet 377(9775):1409–1420

    Article  PubMed  Google Scholar 

  46. Thiele H, Akin I, Sandri M et al (2017) PCI strategies in patients with acute myocardial infarction and cardiogenic shock. N Engl J Med 377(25):2419–2432

    Article  PubMed  Google Scholar 

  47. Wald DS, Morris JK, Wald NJ et al (2013) Randomized trial of preventive angioplasty in myocardial infarction. N Engl J Med 369(12):1115–1123

    Article  CAS  PubMed  Google Scholar 

  48. Gershlick AH, Khan JN, Kelly DJ et al (2015) Randomized trial of complete versus lesion-only revascularization in patients undergoing primary percutaneous coronary intervention for STEMI and multivessel disease. J Am Coll Cardiol 65(10):963–972

    Article  PubMed  PubMed Central  Google Scholar 

  49. Engstrøm T, Kelbæk H, Helqvist S et al (2015) Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3—PRIMULTI): an open-label, randomised controlled trial. Lancet 386(9994):665–671

    Article  PubMed  Google Scholar 

  50. Smits PC, Abdel-Wahab M, Neumann F‑J et al (2017) Fractional flow reserve–guided multivessel angioplasty in myocardial infarction. N Engl J Med 376(13):1234–1244

    Article  PubMed  Google Scholar 

  51. Mehta SR, Wood DA, Storey RF et al (2019) Complete revascularization with multivessel PCI for myocardial infarction. N Engl J Med 381(15):1411–1421

    Article  PubMed  Google Scholar 

  52. Bainey KR, Engstrøm T, Smits PC et al (2020) Complete vs culprit-lesion-only revascularization for ST-segment elevation myocardial infarction: a systematic review and meta-analysis. JAMA Cardiol 5(8):881–888

    Article  PubMed  Google Scholar 

  53. Denormandie P, Simon T, Cayla G et al (2021) Compared outcomes of ST-segment-elevation myocardial infarction patients with multivessel disease treated with primary percutaneous coronary intervention and preserved fractional flow reserve of nonculprit lesions treated conservatively and of those with low fractional flow reserve managed Invasively: insights from the FLOWER-MI trial. Circ Cardiovasc Interv 14(11):e11314

    Article  PubMed  Google Scholar 

  54. Wald DS, Hadyanto S, Bestwick JP (2020) Should fractional flow reserve follow angiographic visual inspection to guide preventive percutaneous coronary intervention in ST-elevation myocardial infarction? Eur Heart J Qual Care Clin Outcomes 6(3):186–192

    Article  PubMed  Google Scholar 

  55. Sardella G, Lucisano L, Garbo R et al (2016) Single-staged compared with multi-staged PCI in multivessel NSTEMI patients: the SMILE trial. J Am Coll Cardiol 67(3):264–272

    Article  PubMed  Google Scholar 

  56. Lee JM, Kim HK, Park KH et al (2023) Fractional flow reserve versus angiography-guided strategy in acute myocardial infarction with multivessel disease: a randomized trial. Eur Heart J 44(6):473–484

    Article  CAS  PubMed  Google Scholar 

  57. Adlam D, Alfonso F, Maas A et al (2018) European Society of Cardiology, acute cardiovascular care association, SCAD study group: a position paper on spontaneous coronary artery dissection. Eur Heart J 39(36):3353–3368

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pathik B, Raman B, Mohd Amin NH et al (2016) Troponin-positive chest pain with unobstructed coronary arteries: incremental diagnostic value of cardiovascular magnetic resonance imaging. Eur Heart J Cardiovasc Imaging 17(10):1146–1152

    Article  PubMed  Google Scholar 

  59. McDonagh TA, Metra M, Adamo M et al (2023) Focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J

  60. Elbadawi A, Elgendy IY, Mahmoud K et al (2019) Temporal trends and outcomes of mechanical complications in patients with acute myocardial infarction. JACC Cardiovasc Interv 12(18):1825–1836

    Article  PubMed  Google Scholar 

  61. Knuuti J, Wijns W, Saraste A et al (2020) 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 41(3):407–477

    Article  PubMed  Google Scholar 

  62. Mach F, Baigent C, Catapano AL et al (2019) 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J 41(1):111–188

    Article  Google Scholar 

  63. Nidorf SM, Fiolet ATL, Mosterd A et al (2020) Colchicine in patients with chronic coronary disease. N Engl J Med 383(19):1838–1847

    Article  CAS  PubMed  Google Scholar 

  64. Tardif JC, Kouz S, Waters DD et al (2019) Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 381(26):2497–2505

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Thiele.

Ethics declarations

Interessenkonflikt

M. Buske, H.-J. Feistritzer, A. Jobs und H. Thiele geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buske, M., Feistritzer, HJ., Jobs, A. et al. Management des akuten Koronarsyndroms. Herz 49, 5–14 (2024). https://doi.org/10.1007/s00059-023-05222-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-023-05222-1

Schlüsselwörter

Keywords

Navigation