Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T11:25:13.865Z Has data issue: false hasContentIssue false

Deynekoite, Ca9□Fe3+(PO4)7 – a new mineral of the merrillite group from phosphide-bearing contact facies of paralava, Hatrurim Complex, Daba-Siwaqa, Jordan

Published online by Cambridge University Press:  11 September 2023

Evgeny V. Galuskin*
Affiliation:
Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
Marcin Stachowicz
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Irina O. Galuskina
Affiliation:
Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
Krzysztof Woźniak
Affiliation:
Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland
Yevgeny Vapnik
Affiliation:
Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
Mikhail N. Murashko
Affiliation:
Institute of Earth Sciences, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 St. Petersburg, Russia
Grzegorz Zieliński
Affiliation:
Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warsaw, Poland
*
Corresponding author: Evgeny V. Galuskin; Email: evgeny.galuskin@us.edu.pl

Abstract

Deynekoite, Ca9□Fe3+(PO4)7 (R3c, a = 10.3516(3)Å, c = 37.1599(17)Å, V = 3448.4(3)Å3 and Z = 6), a new mineral of the merrillite group was found in the contact facies of paralava of the Hatrurim Complex in the Daba-Siwaqa pyrometamorphic rock field, Jordan. The paralava, consisting of diopside, tridymite, anorthite, wollastonite and fluorapatite, is enriched in Fe-bearing phosphides and phosphates at the contact with the altered country rock. Cristobalite overgrowing tridymite has a fish-scales texture indicating that temperature of paralava could have reached 1500°C. Deynekoite with empirical formula (Ca8.90Na0.11K0.02)Σ9.03(Fe3+0.62Mg0.30Al0.05)Σ0.97P6.98V5+0.05O27.70(OH)0.30 forms transparent, light-yellow or light-brown grains up to 30–40 μm in size. Microhardness of deynekoite, VHN25 = 319(29) kg/mm2, corresponds to Mohs hardness = 4.5. Its density was calculated as 3.09 g⋅cm–3 on the basis of its empirical composition and structural data. Deynekoite is uniaxial (−), its refractive indices are ω = 1.658(3), ɛ = 1.652(3) (λ = 589 nm), and pleochroism is not observed. The formation of phosphides on the boundary of the paralava and country rock is connected with carbothermal reductive reactions and realised at temperatures above 1300°С. With decreasing temperature and increasing oxygen activity, phosphides are replaced by Fe2+-bearing phosphates. Deynekoite, which contains Fe3+ (substituting for Fe2+-phosphates) and a small amount of water, formed at temperatures of 600–800°C.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Daniel Atencio

References

Atencio, D. and Azzi, A. (2020) Cerite: A new supergroup of minerals and cerite-(La) renamed ferricerite-(La). Mineralogical Magazine, 84, 928931.10.1180/mgm.2020.86CrossRefGoogle Scholar
Benarafaa, A., Kacimia, M., Gharbagea, S., Millet, J.-M. and Ziyada, M. (2000) Structural and spectroscopic properties of calcium-iron Ca9Fe(PO4)7 phosphate. Materials Research Bulletin, 35, 20472055.10.1016/S0025-5408(00)00403-7CrossRefGoogle Scholar
Bentor, Y.K. (editor) (1960) Israel. In: Lexique Stratigraphique International, Asie, Vol. III, (10.2). Centre national de la recherche scientifique, Paris.Google Scholar
Bosi, F., Biagioni, C. and Oberti, R. (2019a) On the chemical identification and classification of minerals. Minerals, 9, 591.10.3390/min9100591CrossRefGoogle Scholar
Bosi, F., Hatert, F., Hålenius, U., Pasero, M., Miyawaki, R. and Mills, S. (2019b) On the application of the IMA−CNMNC dominant-valency rule to complex mineral compositions. Mineralogical Magazine, 83, 627632.10.1180/mgm.2019.55CrossRefGoogle Scholar
Britvin, S.N., Pakhomovskii, Y.A., Bogdanova, A.N. and Skiba, V.I. (1991) Strontiowhitlockite, Sr9Mg(PO3OH)(PO4)6, a new mineral species from the Kovdor deposit, Kola Peninsula, U.S.S.R. The Canadian Mineralogist, 29, 8793.Google Scholar
Britvin, S.N., Krivovichev, S.V. and Armbruster, T. (2016) Ferromerrillite, Ca9NaFe2+(PO4)7, a new mineral from the Martian meteorites, and some insights into merrillite-tuite transformation in shergottites. European Journal of Mineralogy, 28, 125136.10.1127/ejm/2015/0027-2508CrossRefGoogle Scholar
Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Vereshchagin, O.S., Vlasenko, N.S., Shilovskikh, V.V. and Zaitsev, A.N. (2019a) Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Physics and Chemistry of Minerals, 46, 361369.10.1007/s00269-018-1008-4CrossRefGoogle Scholar
Britvin, S.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Krzhizhanovskaya, M.G., Gorelova, L.A., Vereshchagin, O.S., Shilovskikh, V.V. and Zaitsev, AN (2019b) Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, Southern Levant. Mineralogy and Petrology, 113, 237248.10.1007/s00710-018-0647-yCrossRefGoogle Scholar
Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Krzhizhanovskaya, M.G., Vereshchagin, O.S., Shilovskikh, V.V. and Vlasenko, N.S. (2020) Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite–transjordanite (hexagonal Fe2P–Ni2P). American Mineralogist, 105, 428436.10.2138/am-2020-7275CrossRefGoogle Scholar
Britvin, S.N., Murashko, M.N., Krzhizhanovskaya, M.G., Vapnik, Ye., Vlasenko, N.S., Vereshchagin, O.S., Pankin, D.V. and Vasiliev, E.A. (2021a) Moabite, IMA 2020–092. CNMNC Newsletter 60; Mineralogical Magazine, 85, 454458.Google Scholar
Britvin, S.N., Galuskina, I.O., Vlasenko, N.S., Vereshchagin, O.S., Bocharov, V.N., Krzhizhanovskaya, M.G., Shilovskikh, V.V., Galuskin, E.V., Vapnik, Ye. and Obolonskaya, E.V. (2021b) Keplerite, Ca9(Ca0.50.5)Mg(PO4)7, a new meteoritic and terrestrial phosphate isomorphous with merrillite, Ca9NaMg(PO4)7. American Mineralogist, 106, 19171927.10.2138/am-2021-7834CrossRefGoogle Scholar
Britvin, S.N., Murashko, M.N., Vapnik, Ye., Vlasenko, N.S., Vereshchagin, O.S., Krzhizhanovskaya, M.G. and Bocharov, V.N. (2021c) Nabateaite, IMA 2021–026. CNMNC Newsletter 62; Mineralogical Magazine, 85, 634638.Google Scholar
Britvin, S.N., Murashko, M.N., Vapnik, Ye., Zaitsev, A.N., Shilovskikh, V.V., Krzhizhanovskaya, M.G., Gorelova, L.A., Vereshchagin, O.S., Vasilev, E.A. and Vlasenko, N.S. (2022a) Orishchinite, a new terrestrial phosphide, the Ni-dominant analogue of allabogdanite. Mineralogy and Petrology, 116, 369378.10.1007/s00710-022-00787-xCrossRefGoogle Scholar
Britvin, S.N., Murashko, M.N., Krzhizhanovskaya, M.G., Vereshchagin, O.S., Vlasenko, N.S., Vapnik, Ye. and Bocharov, V.N. (2022b) Nazarchukite, IMA 2022-005, in: CNMNC Newsletter 67. Mineralogical Magazine, 86, 849853.Google Scholar
Britvin, S.N., Murashko, M.N., Krzhizhanovskaya, M.G., Vlasenko, N.S., Vereshchagin, O.S., Vapnik, Ye. and Bocharov, V.N. (2023a) Crocobelonite, CaFe3+2(PO4)2O, a new oxyphosphate mineral, the product of pyrolytic oxidation of natural phosphides. American Mineralogist, 108, 19731983.10.2138/am-2022-8757CrossRefGoogle Scholar
Britvin, S.N., Murashko, M.N., Krzhizhanovskaya, M.G., Vapnik, Ye., Vlasenko, N.S., Vereshchagin, O.S., Pankin, D.V., Zaitsev, A.N. and Zolotarev, A.A. (2023b) Yakubovichite, CaNi2Fe3+(PO4)3, a new nickel phosphate mineral of non-meteoritic origin. American Mineralogist, 108, 21422150.10.2138/am-2022-8800CrossRefGoogle Scholar
Cooper, M.A., Hawthorne, F.C., Abdu, Y., Ball, N.A., Ramik, R.A. and Tait, K.T. (2013) Wopmayite, ideally Ca6Na3Mn(PO4)3(PO3OH)4, a new phosphate mineral from the Tanco Mine, Bernic Lake, Manitoba. The Canadian Mineralogist, 51, 93106.10.3749/canmin.51.1.93CrossRefGoogle Scholar
Deyneko, D.V., Aksenov, S.M., Morozov, V.A., Stefanovich, S.Yu., Dimitrova, O.V., Barishnikova, O.V. and Lazoryak, B.I. (2014) A new hydrogen-containing whitlockite-type phosphate Ca9(Fe0.63Mg0.37)H0.37(PO4)7: hydrothermal synthesis and structure. Zeitschrift für Kristallographie, 229, 823830.10.1515/zkri-2014-1774CrossRefGoogle Scholar
Dolomanov, O.V., Bourhis, L., Gildea, R.J., Howard, J.A.K. and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339341.10.1107/S0021889808042726CrossRefGoogle Scholar
Frondel, C. (1943) Mineralogy of the calcium phosphates in insular phosphate rock. American Mineralogist, 28, 215232.Google Scholar
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Pakhomova, A., Armbruster, T., Vapnik, Y., Włodyka, R., Dzierżanowski, P. and Murashko, M. (2015) New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part II. Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F and aradite, BaCa6[(SiO4)(VO4)](VO4)2F, from paralavas of the Hatrurim Basin, Negev Desert, Israel. Mineralogical Magazine, 9, 10731087.10.1180/minmag.2015.079.5.04CrossRefGoogle Scholar
Galuskin, E.V., Galuskina, I.O., Gfeller, F., Krüger, B., Kusz, J., Vapnik, Ye., Dulski, M. and Dzierżanowski, P. (2016) Silicocarnotite, Ca5[(SiO4)(PO4)](PO4), a new ‘old’ mineral from the Negev Desert, Israel, and the ternesite–silicocarnotite solid solution: indicators of high-temperature alteration of pyrometamorphic rocks of the Hatrurim Complex, Southern Levant. European Journal of Mineralogy, 28, 105123.10.1127/ejm/2015/0027-2494CrossRefGoogle Scholar
Galuskin, E.V., Krüger, B., Galuskina, I.O., Krüger, H., Vapnik, Ye., Pauluhn, A. and Olieric, V. (2019) Levantite, KCa3(Al2Si3)O11(PO4), a new latiumite-group mineral from the pyrometamorphic rocks of the Hatrurim Basin, Negev Desert, Israel. Mineralogical Magazine, 83, 713721.10.1180/mgm.2019.37CrossRefGoogle Scholar
Galuskin, E., Galuskina, I., Krüger, B., Krüger, H., Vapnik, Ye., Krzątała, A., Środek, D. and Zieliński, G. (2021) Nomenclature and classification of the arctite supergroup. Aravaite, Ba2Ca18(SiO4)6[(PO4)3(CO3)]F3O, a new arctite supergroup mineral from Negev Desert, Israel. The Canadian Mineralogist, 59, 191209.10.3749/canmin.2000035CrossRefGoogle Scholar
Galuskin, E.V., Galuskina, I.O., Kamenetsky, V., Vapnik, Ye., Kusz, J. and Zieliński, G. (2022a) First in-situ terrestrial osbornite (TiN) in the pyrometamorphic Hatrurim Complex, Israel. Lithosphere, 81277447.10.2113/2022/8127747CrossRefGoogle Scholar
Galuskin, E., Stachowicz, M., Galuskina, I.O., Woźniak, K., Vapnik, Y., Murashko, N.N. and Zieliński, G. (2022b) Deynekoite, IMA 2021-108. CNMNC Newsletter 66. Mineralogical Magazine, 86, https://doi.org/10.1180/mgm.2022.33Google Scholar
Galuskin, E.V., Galuskina, I.O., Vapnik, Y. and Zieliński, G. (2023a) Discovery of “meteoritic” layered disulphides ACrS2 (A = Na, Cu, Ag) in terrestrial rock. Minerals, 13, 381.10.3390/min13030381CrossRefGoogle Scholar
Galuskin, E.V., Kusz, J., Galuskina, I.O., Książek, M., Vapnik, Ye. and Zieliński, G. (2023b) Discovery of terrestrial andreyivanovite, FeCrP, and the effect of Cr and V substitution in barringerite-allabogdanite low-pressure transition. American Mineralogist, 108, 15061515.10.2138/am-2022-8647CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V. and Vapnik, Y.A. (2016) Terrestrial merrillite. Plinius, 42, 563 [2nd European Mineralogical Conference. Abstract].Google Scholar
Galuskina, I.O., Galuskin, E.V., Pakhomova, A.S., Widmer, R., Armbruster, T., Krüger, B., Grew, E.S., Vapnik, Y., Dzierażanowski, P. and Murashko, M. (2017a) Khesinite, Ca4Mg2Fe3+10O4 [(Fe3+10Si2)O36], a new rhönite-group (sapphirine supergroup) mineral from the Negev Desert, Israel—Natural analogue of the SFCA phase. European Journal of Mineralogy, 29, 101116.10.1127/ejm/2017/0029-2589CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Prusik, K., Vapnik, Y., Juroszek, R., Jeżak, L. and Murashko, M. (2017b) Dzierżanowskite, CaCu2S2 – a new natural thiocuprate from Jabel Harmun, Judean Desert, Palestine Autonomy, Israel. Mineralogical Magazine, 81, 10731085.10.1180/minmag.2016.080.153CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Vapnik, Y., Prusik, K., Stasiak, M., Dzierżanowski, P. and Murashko, M. (2017c) Gurimite, Ba3(VO4)2 and hexacelsian, BaAl2Si2O8 - Two new minerals from schorlomite-rich paralava of the Hatrurim Complex, Negev Desert, Israel. Mineralogical Magazine, 81, 10091019.10.1180/minmag.2016.080.147CrossRefGoogle Scholar
Geller, Y.I., Burg, A., Halicz, L. and Kolodny, Y. (2012) System closure during the combustion metamorphic Mottled Zone event, Israel. Chemical Geology, 334, 2536.10.1016/j.chemgeo.2012.09.029CrossRefGoogle Scholar
Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, 180.Google Scholar
Gross, S. (1984) Occurrence of ye'elimite and ellestadite in an unusual cobble from the „pseudo-conglomerate” of the Hatrurim Basin. Geological Survey of Israel Bulletin, 84, 14.Google Scholar
Hughes, J.M., Jolliff, B.L. and Rakovan, J. (2008) The crystal chemistry of whitlockite and merrillite and the dehydrogenation of whitlockite to merrillite. American Mineralogist, 93, 13001305.10.2138/am.2008.2683CrossRefGoogle Scholar
Hwang, S.L., Shen, P., Chu, H.T., Yui, T.F., Varela, M.E. and Iizuka, Y. (2019) New minerals tsangpoite Ca5(PO4)2(SiO4) and matyhite Ca9(Ca0.50.5)Fe(PO4)7 from the D'Orbigny angrite. Mineralogical Magazine, 83, 293313.10.1180/mgm.2018.125CrossRefGoogle Scholar
Jolliff, B.L., Hughes, J.M., Freeman, J.J. and Zeigler, R.A. (2006) Crystal chemistry of lunar merrillite and comparison to other meteoritic and planetary suites of whitlockite and merrillite. American Mineralogist, 91, 15831595.10.2138/am.2006.2185CrossRefGoogle Scholar
Khoury, H.N., Sokol, E.V., Kokh, S.N., Seryotkin, Y.V., Nigmatulina, E.N., Goryainov, S.V., Belogub, E.V. and Clark, I.D. (2016) Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn, Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, Central Jordan. Mineralogy and Petrology, 110, 125140.10.1007/s00710-015-0413-3CrossRefGoogle Scholar
Kolodny, Y. and Gross, S. (1974) Thermal metamorphism by combustion of organic matter: isotopic and petrological evidence. Journal of Geology, 82, 489506.10.1086/627995CrossRefGoogle Scholar
Krüger, B., Galuskin, E.V., Galuskina, I.O., Krüger, H. and Vapnik, Ye. (2021) Kahlenbergite KAl11O17, a new – alumina mineral and Fe-rich hibonite from the Hatrurim Basin, the Negev desert, Israel. European Journal of Mineralogy, 33, 341355.10.5194/ejm-33-341-2021CrossRefGoogle Scholar
Krzątała, A., Krüger, B., Galuskina, I., Vapnik, Y. and Galuskin, E. (2020) Walstromite, BaCa2(Si3O9), from Rankinite Paralava within Gehlenite Hornfels of the Hatrurim Basin, Negev Desert, Israel. Minerals, 10, 407.10.3390/min10050407CrossRefGoogle Scholar
Lazoryak, B.I., Morozov, V.A., Belik, A.A., Khasanov, S.S. and Shekhtman, V.Ch. (1996) Crystal structures and characterization of Ca9Fe(PO4)7 and Ca9FeH0.9(PO4)7. Journal of Solid State Chemistry, 122, 1521.10.1006/jssc.1996.0074CrossRefGoogle Scholar
Lazoryak, B.I., Deyneko, D.V., Aksenov, S.M., Stefanovich, S.Yu., Fortalnova, E.A., Petrova, D.A., Baryshnikova, O.V., Kosmyna, M.B. and Shekhovtsov, A.N. (2018) Pure, lithium- or magnesium-doped ferroelectric single crystals of Ca9Y(VO4)7: cation arrangements and phase transitions. Zeitschrift für Kristallographie, 233, 111.Google Scholar
Li, T., Li, Z., Huang, Z., Zhong, J., Fan, G., Guo, D., Qin, M., Zhang, J., Li, J., Liu, H., Qiu, L., Wang, F., He, S., Yu, A., Liu, R., Wu, Y., Deng, L., Tai, Z., He, Y. and Lin, Y. (2022) Changesite-(Y), IMA 2022–023. CNMNC Newsletter 69; Mineralogical Magazine, 86, 988992.Google Scholar
Matthews, A. and Gross, S. (1980) Petrologic evolution of the Mottled Zone (Hatrurim) metamorphic complex of Israel. Israel Journal of Earth Sciences, 29, 93106.Google Scholar
Murashko, M.N., Britvin, S.N., Vapnik, Ye., Polekhovsky, Y.S., Shilovskikh, V.V., Zaitsev, A.N. and Vereshchagin, O.S. (2022) Nickolayite, FeMoP, a new natural molybdenum phosphide. Mineralogical Magazine, 86, 749757.10.1180/mgm.2022.52CrossRefGoogle Scholar
Novikov, I., Vapnik, Ye. and Safonova, I (2013) Mud volcano origin of the Mottled Zone, South Levant. Geoscience Frontiers, 4, 597619.10.1016/j.gsf.2013.02.005CrossRefGoogle Scholar
Rigaku Oxford Diffraction, (2019) CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.Google Scholar
Schmieder, M., Buchner, E. and Kröchert, J. (2009) “Ballen silica” in impactites and magmatic rocks. Abstracts 40th Lunar and Planetary Science Conference. Texas, USA.Google Scholar
Shahar, Y., Yaacov, N. and Yair, S (1989) Two close associations: Si-P-Fe and Si-P-C in the Upper Campanian and Lower Maastrichtian sediments of the Negev, Israel. Sciences Géologiques, bulletins et mémoires, 42, 155171.10.3406/sgeol.1989.1820CrossRefGoogle Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Sokol, E., Novikov, I., Zateeva, S., Vapnik, Ye., Shagam, R. and Kozmenko, O. (2010) Combustion metamorphism in the Nabi Musa dome: New implications for a mud volcanic origin of the Mottled Zone, Dead Sea area. Basin Research, 22, 414438.10.1111/j.1365-2117.2010.00462.xCrossRefGoogle Scholar
Solecka, U., Bajda, T., Topolska, J., Zelek-Pogudz, S. and Manecki, M. (2018) Raman and Fourier transform infrared spectroscopic study of pyromorphite-vanadinite solid solutions. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 190, 96103.10.1016/j.saa.2017.08.061CrossRefGoogle ScholarPubMed
Sugiyama, K. and Tokonami, M. (1987) Structure and crystal chemistry of a dense polymorph of tricalcium phosphate Ca3(PO4)2: a host to accommodate large lithophile elements in the Earth's mantle. Physics and Chemistry of Minerals, 15, 12513010.1007/BF00308774CrossRefGoogle Scholar
Vapnik, Y., Sharygin, V.V., Sokol, E.V. and Shagam, R. (2007) Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. Reviews in Engineering Geology, 18, 121.Google Scholar
Ward, D., Bischoff, A., Roszjar, J., Berndt, J. and Whitehouse, M.J. (2017) Trace element inventory of meteoritic Ca-phosphates. American Mineralogist, 102, 18561880.10.2138/am-2017-6056CrossRefGoogle Scholar
Wherry, E.T. (1917) Merrillite, meteoritic calcium phosphate. American Mineralogist, 2, 119119.Google Scholar
Witzke, T., Phillips, B.L., Woerner, W., Countinho, J.M.V., Färber, G. and Contreira Filho, R.R. (2015) Hedegaardite, IMA 2014-069. CNMNC Newsletter No. 23, February 2015, page 54. Mineralogical Magazine, 79, 5158.Google Scholar
Xie, X., Minitti, M.E., Chen, M., Mao, H.-K., Wang, D., Shu, J. and Fei, Y. (2003) Tuite, γ-Ca3(PO4)2 – A new mineral from the Suizhou L6 chondrite. European Journal of Mineralogy, 15, 10011005.10.1127/0935-1221/2003/0015-1001CrossRefGoogle Scholar
Xie, X., Yang, H., Gu, X., Downs, R.T. (2015) Chemical composition and crystal structure of merrillite from the Suizhou meteorite. American Mineralogist, 100, 27532756.10.2138/am-2015-5488CrossRefGoogle Scholar
Supplementary material: File

Galuskin et al. supplementary material 1

Galuskin et al. supplementary material
Download Galuskin et al. supplementary material 1(File)
File 289.4 KB
Supplementary material: File

Galuskin et al. supplementary material 2

Galuskin et al. supplementary material
Download Galuskin et al. supplementary material 2(File)
File 89.8 KB
Supplementary material: File

Galuskin et al. supplementary material 3

Galuskin et al. supplementary material
Download Galuskin et al. supplementary material 3(File)
File 25.8 KB