Skip to main content
Log in

Experimental Study of the Discharge Characteristics of a Magnetically Stabilized Double-Chamber Arc Plasma Torch

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The double-chamber arc plasma torch (DCAPT) is a promising arc source due to its high energy efficiency and low erosion rate. It has been widely used in various fields including coal powder ignition, boiler heavy oil-free ignition, and production of sheet-shaped carbon materials, among others, but research on its micro-discharge characteristics is still insufficient. In this work, a magnetically-stabilized DCAPT with a quartz window on the inner electrode is designed and studied, in order to investigate the effects of magnetic field position and intensity, discharge current, gas flow rate, electrode diameter, and electrode polarity on its discharge characteristics. Results show that both the volt-ampere characteristics and thermal efficiency of DCAPT exhibit a strictly decreasing trend, and both of them can be accurately predicted using similar theoretical approaches. The discharge characteristics of DCAPT differ significantly for different polarities. When in reverse polarity, the outer cathode arc root attaches to the outlet, resulting in an increased arc length and greater randomness in the arc-root fluctuations. As a result, the arc length, voltage, thermal efficiency, and voltage fluctuations are all greater than with normal polarity. Within the experimental range of the parameters, the thermal efficiency of DCAPT is between 40 and 74%. Due to the cathode's “easily mobility” characteristic, the rotation speed of the cathode arc root is always greater than that of the anode, resulting in higher thermal losses for the cathode than for the anode. This is the primary source of thermal loss and the main factor contributing to the rapid erosion of the cathode in the DCAPT. This study reveals the correlation between the volt-ampere characteristics, thermal characteristics, and dynamic evolution of the DCAPT. The research findings have significance for guiding the structural design, parameter selection, and choice of application of this type of plasma torch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Mazzoni L, Janajreh I, Elagroudy S, Ghenai C (2020) Modeling of plasma and entrained flow co-gasification of MSW and petroleum sludge. Energy 196:117001

    Article  CAS  Google Scholar 

  2. Zhou J, Wang C, Song M, Chen X, Xia W (2021) Simple synthesis of ultrafine amorphous silicon carbide nanoparticles by atmospheric plasmas. Mater Lett 299:130072

    Article  CAS  Google Scholar 

  3. Kim KS, Kingston CT, Ruth D, Barnes M, Simard B (2014) Synthesis of high quality single-walled carbon nanotubes with purity enhancement and diameter control by liquid precursor Ar–H2 plasma spraying. Chem Eng J 250:331–341

    Article  CAS  Google Scholar 

  4. Matsumoto A, Osaki S, Kobata T, Hashimoto B, Uchihara H, Nakahara T (2010) Determination of cadmium by an improved double chamber electrothermal vaporization inductively coupled plasma atomic emission spectrometry. Microchem J 95(1):85–89

    Article  CAS  Google Scholar 

  5. Nikolay S, Victor K (2023) Synthesis and characteristics of graphene–graphene oxide material obtained by an underwater impulse direct current discharge. Plasma Chem Plasma Process 43:1077–1092

    Article  CAS  Google Scholar 

  6. Ye M, Zhao M, Chen S, Yang S, Li J (2020) Influence of plasma heating on the metallurgical effects of a continuous casting tundish. Metals 10(11):1438

    Article  CAS  Google Scholar 

  7. Lukiaschenko VG, Messerle VE, Ustimenko AB, Umbetkaliev KA (2018) Double chamber linear circuit plasmatron. Eurasian J Phys Funct Mater 2(2):140–150

    Article  Google Scholar 

  8. Kim KS, Hong SH, Lee KS, Ju WT (2007) Continuous synthesis of nanostructured sheetlike carbons by thermal plasma decomposition of methane. IEEE Trans Plasma Sci 35(2):434–443

    Article  CAS  Google Scholar 

  9. Yawen CAO, Bin LI, Xianwei HAN, Chang TAN, Zhang Z, Zhang X, Jianguo WEI (2021) Study of double-chamber air arc plasma torch and the application in solid-waste disposal. Plasma Sci Technol 23(6):064006

    Article  Google Scholar 

  10. Messerle VE, Ustimenko AB, Lukyashchenko VG, Ushanov VZ, Karpenko EI (2011) Long life DC arc plasmatron with nanocarbon coating of electrodes. In: Proceedings of the 20th international symposium on plasma chemistry (ISPC20). Philadelphia, USA, pp 24–29

  11. Brilhac JF, Pateyron B, Delluc G, Coudert JF, Fauchais P (1995) Study of the dynamic and static behavior of DC vortex plasma torches 1 Button type cathode. Plasma Chem Plasma Process 15(2):231–255

    Article  CAS  Google Scholar 

  12. Zhukov MF, Zasypkin IM (eds) (2007) Thermal plasma torches: design, characteristics, application. Cambridge Int Science Publishing, Cambridge

    Google Scholar 

  13. Zhukov MF, Koroteev AS, Uriukov BA (1975) Applied dynamics of thermal plasma. Novosibirsk Izdatel Nauka, p 299 (in Russian)

  14. Zhukov MF, Kozlov NP, Pustogarov AV, Anshakov AS, Khvesiuk VI, Diuzhev GA, Dandaron GN (1982) Near-electrode processes in arc discharges. Novosibirsk Izdatel Nauka, p 160 (in Russian)

  15. An’shakov AS, Zhukov MF, Timoshevskii AN (1973) Dynamics of electrical parameters of an arc and its behavior in a plasmatron channel. J Appl Mech Tech Phys 14(5):612–616

    Article  Google Scholar 

  16. Hur M, Kim KS, Hong SH (2003) Operational features and air plasma characteristics of a thermal plasma torch with hollow electrodes. Plasma Sources Sci Technol 12(2):255

    Article  CAS  Google Scholar 

  17. Batomunkuev DY, Vashenko SP (2019) Electric arc plasmatorch of a two-chamber scheme with reverse polarity of electrodes connection. In: Journal of physics: conference series, vol 1393, no 1, p 012003. IOP Publishing

  18. Zhengxin YIN, Deping YU, Yana WEN, Zhang Q, Jier QIU, Shengyuan YANG (2021) Numerical investigation on the flow characteristics of a reverse-polarity plasma torch by two-temperature thermal non-equilibrium modelling. Plasma Sci Technol 23(9):095402

    Article  Google Scholar 

  19. Trelles JP (2013) Computational study of flow dynamics from a dc arc plasma jet. J Phys D Appl Phys 46(25):255201

    Article  Google Scholar 

  20. Park SC, Kim DU, Kim MH, Seo JH, Yang OB (2013) Numerical analysis of a hollow electrode plasma torch with a reversed polarity discharge for radioactive waste treatment. J Korean Phys Soc 63:1746–1754

    Article  CAS  Google Scholar 

  21. Wang C, Li J, Zhang Z, Ye L, Xia W, Xia W (2019) An experimental investigation of cathode spot motion in a magnetically rotating arc plasma generator at atmospheric pressure. Plasma Chem Plasma Process 39:259–276

    Article  CAS  Google Scholar 

  22. Li M, Deng W, Fan Y, Yang J, Liu X (2004) Study on arc movement in hollow electrode plasma generators with impressed double magnetic fields. Plasma Chem Plasma Process 24:73–84

    Article  Google Scholar 

  23. Yawen CAO, Xianwei HAN, Chang TAN, Zhihao ZHANG, Bin LI (2021) Characteristic researches on arc generated by magnetic double-chamber air plasma torch. High Volt Eng 47(3):832–839

    Google Scholar 

  24. Dongbin OU, Xingying ZHU, Handong MA, Haiqun CHEN, Fa ZHOU (2021) Experimental study of the thermal characteristics of axial arc plasma torch in double arc chamber. Spacecr Environ Eng 38(6):632–639

    Google Scholar 

  25. Kalra CS, Cho YI, Gutsol A, Fridman A, Rufael TS (2005) Gliding arc in tornado using a reverse vortex flow. Rev Sci Instrum 76(2):025110

    Article  Google Scholar 

  26. Rabinovich A, Nirenberg G, Kocagoz S, Surace M, Sales C, Fridman A (2022) Scaling up of non-thermal gliding arc plasma systems for industrial applications. Plasma Chem Plasma Process 42(1):35–50

    Article  CAS  Google Scholar 

  27. You T, Wang C, Yang C, Wang F, Xia W (2023) Experimental study of the discharge characteristics of a 3D vortex gliding arc plasmatron. Contrib Plasma Phys 63(2):e202200120

    Article  Google Scholar 

  28. Dinh DK, Lee DH, Iqbal M, Kang H, Choi S, Jung CM, Song YH, Jo S, Kim KT (2020) Evaluation of the thermal effect of arc plasma in the plasma-driven partial oxidation of octane. Plasma Chem Plasma Process 40:483–497

    Article  CAS  Google Scholar 

  29. Sun Z, Shi Z, Li Z, Geng X, Yin Z (2022) Effect of electrode geometry on the flow structure induced by plasma actuators. Phys Fluids 34(9):097110

    Article  CAS  Google Scholar 

  30. Zhang J, Zheng Y (2019) Simulation for the characteristics of plasma of the multi-gap pseudospark discharge. Plasma Chem Plasma Process 39:969–984

    Article  CAS  Google Scholar 

  31. Prado ESP, Essiptchouk A, Amaral-Labat G, da Silva Sobrinho AS, Petraconi G, Baldan MR, Miranda FS (2023) Coal tar pitch processing: experimental and theoretical characteristics of thermal plasma process using DC plasma torch. Plasma Chem Plasma Process 43(1):25–46

    Article  CAS  Google Scholar 

  32. Cao X, He R, Xu H, Huang B, Ma Y, Zhao M, Zhao Y (2021) Experimental study on the design and characteristics of an optimized thermal plasma torch with two gas injections. Plasma Chem Plasma Process 41(4):1169–1181

    Article  CAS  Google Scholar 

  33. Yin Z, Yu D, Xiao Y, Zhang Q, Qiu J (2023) A novel method for predicting the occurrence of the large-scale shunting in the reverse-polarity plasma torch. Phys Scr 98(3):035015

    Article  Google Scholar 

  34. Ghorui S, Sahasrabudhe SN, Das AK (2010) Current transfer in dc non-transferred arc plasma torches. J Phys D Appl Phys 43(24):245201

    Article  Google Scholar 

  35. Brilhac JF, Pateyron B, Coudert JF, Fauchais P, Bouvier A (1995) Study of the dynamic and static behavior of de vortex plasma torches: Part II: well-tye cathode. Plasma Chem Plasma Process 15:257–277

    Article  CAS  Google Scholar 

  36. Ghorui S, Tiwari N, Meher KC, Jan A, Bhat A, Sahasrabudhe SN (2015) Direct probing of anode arc root dynamics and voltage instability in a dc non-transferred arc plasma jet. Plasma Sources Sci Technol 24(6):065003

    Article  Google Scholar 

  37. Wang C, Cui H, Zhang Z, Xia W, Xia W (2017) Observation of arc modes in a magnetically rotating arc plasma generator. Contrib Plasma Phys 57(9):395–403

    Article  CAS  Google Scholar 

  38. Chau SW, Hsu KL, Lin DL, Tzeng CC (2007) Experimental study on copper cathode erosion rate and rotational velocity of magnetically driven arcs in a well-type cathode non-transferred plasma torch operating in air. J Phys D Appl Phys 40(7):1944

    Article  CAS  Google Scholar 

  39. Van Dijk J, Kroesen GMW, Bogaerts A (2009) Plasma modelling and numerical simulation. J Phys D Appl Phys 42(19):190301

    Article  Google Scholar 

  40. Zhukov MF (1996) Electric arc generators of thermal plasma. Plasma Devices Oper 5(1):1–36

    Article  CAS  Google Scholar 

  41. Zhukov MF (1972) Electric-arc generators of low-temperature plasma. Teplofiz Vys Temp 10:1295–1307

    CAS  Google Scholar 

  42. Incropera FP, DeWitt DP, Bergman TL, Lavine AS (1996) Fundamentals of heat and mass transfer, vol 6. Wiley, New York, p 116

    Google Scholar 

  43. Hejazian M, Nguyen NT (2017) Magnetofluidics for manipulation of convective heat transfer. Int Commun Heat Mass Transf 81:149–154

    Article  CAS  Google Scholar 

  44. Petrini PA, Lester D, Rosengarten G (2023) Enhanced laminar heat transfer via magnetically driven ferrofluids. Int J Heat Mass Transf. Available at SSRN 4440825

Download references

Acknowledgements

The authors acknowledge support from the Experimental Teaching Center for Engineering Science (ETCES) at the University of Science and Technology of China for providing the experimental platform.

Funding

This work is supported by National Natural Science Foundation of China (Nos. 12075242, 11675177 and 11705202).

Author information

Authors and Affiliations

Authors

Contributions

KL: Conceptualization, Investigation, Methodology, Writing-Original Draft; TY: Data Curation, Validation; YZ: Methodology; ZY: Investigation; WX: Writing-Review and Editing and Funding acquisition; CW: Conceptualization, Investigation, Writing-Review and Editing and Funding acquisition.

Corresponding author

Correspondence to Cheng Wang.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest for this article.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., You, T., Zhang, Y. et al. Experimental Study of the Discharge Characteristics of a Magnetically Stabilized Double-Chamber Arc Plasma Torch. Plasma Chem Plasma Process 44, 131–157 (2024). https://doi.org/10.1007/s11090-023-10424-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10424-w

Keywords

Navigation