Skip to main content
Log in

Explorative Research on 100 mW Magnitude Optical Frequency Transmission Via Fiber

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

In this work, we investigate the optical frequency transmission with a magnitude of 100 mW through a 20 m polarization-maintaining fiber, using the phase noise compensation method. In order to minimize potential noise caused by stray light reflections in the fiber, we incorporate two acoustic-optic modulators to spectrally separate the heterodyne signal, effectively suppressing these sources of noise. Our experimental results demonstrate that the modified Allan deviations of fractional frequency stability for 1 s and 10,000 s are approximately 2.5 · 1017 and 1 · 1020, respectively. This research contributes to the advancement of high-power optical frequency transmission via optical fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, Opt. Lett., 19, 1777 (1994).

    Article  ADS  Google Scholar 

  2. M. Schioppo, J. Kronjäger, A. Silva, et al., Nat. Commun., 13, 1 (2022).

    Article  Google Scholar 

  3. C. A. Holliman, M. Fan, A. Contractor, et al., Phys. Rev. Lett., 128, 033202 (2022).

    Article  ADS  Google Scholar 

  4. S. M. Brewer, J.-S. Chen, A. M. Hankin, et al., Phys. Rev. Lett., 123, 033201 (2019).

    Article  ADS  Google Scholar 

  5. W. F. McGrew, X. Zhang, R. J. Fasano, et al., Nature, 564 (7734), 87 (2018).

    Article  ADS  Google Scholar 

  6. T. L. Nicholson, S. L. Campbell, R. B. Hutson, et al., Nat. Commun., 6, 6896 (2015); DOI: https://doi.org/10.1038/ncomms7896

    Article  ADS  Google Scholar 

  7. S. Herbers, S. Häfner, S. Dörscher, et al., Opt. Lett., 47, 5441 (2022).

    Article  ADS  Google Scholar 

  8. D. G. Matei, T. Legero, S. Häfner, et al., Phys. Rev. Lett., 118, 263202 (2017).

    Article  ADS  Google Scholar 

  9. J. M. Robinson, E. Oelker, W. R. Milner, et al., Optica, 6, 240 (2019); DOI: https://doi.org/10.1364/OPTICA.6.000240

    Article  ADS  Google Scholar 

  10. E. Peik, T. Schumm, M. Safronova, et al., Quantum Sci. Technol., 6, 034002 (2021).

    Google Scholar 

  11. W. M. Campbell, B. T. McAllister, M. Goryachev, et al., Phys. Rev. Lett., 126, 071301 (2021).

    Article  ADS  Google Scholar 

  12. Ch. Eisele, A. Yu. Nevsky, and S. Schiller, Phys. Rev. Lett., 103, 090401 (2009).

    Article  ADS  Google Scholar 

  13. S. Winkler, Phys. Rev. Lett., 99, 050401 (2007).

    Article  Google Scholar 

  14. S. Kolkowitz, I. Pikovski, N. Langellier, et al., Phys. Rev. D, 94, 124043 (2016).

    Article  ADS  Google Scholar 

  15. C. Q. Ma, L. F. Wu, Y. Y. Jiang, et al., Chin. Phys. B, 24, 084209 (2015).

    Article  ADS  Google Scholar 

  16. H. Jiang, F. Kéfélian, S. Crane, et al., J. Opt. Soc. Am. B, 25, 2029 (2008).

    Article  ADS  Google Scholar 

  17. F. Narbonneau, M. Lours, S. Bize, et al., Rev. Sci. Instrum., 77, 064701 (2006).

    Article  ADS  Google Scholar 

  18. Y. Xu, “The Influence of Optical Fiber Phase Noise on Transmission of Narrow-Line Width Laser and the Technique of Phase Noise Cancellation,” PhD Thesis, Huadong Normal University, Shanghai (2009).

  19. P. A. Williams, W. C. Swann, and N. R. Newbury, J. Opt. Soc. Am. B, 25, 1284 (2008).

    Article  ADS  Google Scholar 

  20. O. Lopez, A. Haboucha, B. Chanteau, et al., Opt. Express, 20, 23518 (2012).

    Article  ADS  Google Scholar 

  21. S. Droste, F. Ozimek, Th. Udem, et al., Phys. Rev. Lett., 111, 110801 (2013).

    Article  ADS  Google Scholar 

  22. D. Calonico, E. K. Bertacco, C. E. Calosso, et al., Appl. Phys. B, 117, 979 (2014).

    Article  ADS  Google Scholar 

  23. N. Chiodo, N. Quintin, F. Stefani, et al., Opt. Express, 23, 33927 (2015).

    Article  ADS  Google Scholar 

  24. X. Deng, J. Liu, D.-D. Jiao, et al., Chin. Phys. Lett., 33, 114202 (2016).

    Article  ADS  Google Scholar 

  25. C. Ma, L. Wu, Y. Jiang, et al., Appl. Phys. Lett., 107, 261109 (2015).

    Article  ADS  Google Scholar 

  26. L. Wu, Y. Jiang, C. Ma, et al., Opt. Lett., 41, 4368 (2016).

    Article  ADS  Google Scholar 

  27. Z. Feng, X. Zhang, R. Wu, et al., IEEE Photonics J., 11, 7200909 (2019); DOI: https://doi.org/10.1109/JPHOT.2019.2892067

    Article  Google Scholar 

  28. L. Hu, X. Tian, G. Wu, and J. Chen, Opt. Lett., 45, 4308 (2020).

    Article  ADS  Google Scholar 

  29. D. Husmann, L. G. Bernier, M. Bertrand, et al., Opt. Express, 29, 24592 (2021).

    Article  ADS  Google Scholar 

  30. H. Jiang, “Development of Ultra-Stable Laser Sources and Long-Distance Optical Link via Telecommunication Networks,” PhD Thesis, Université Paris 13 (2010).

  31. X. Zhang, X. Deng, Q. Zang, et al., Chin. Phys. Lett., 39, 044201 (2022).

    Article  ADS  Google Scholar 

  32. Q. Zang, X. Deng, X. Zhang, et al., Infrared Phys. Technol., 128, 104511 (2023).

    Article  Google Scholar 

  33. F. Biraben, J. C. Garreau, L. Julien, and M. Allegrini, Phys. Rev. Lett., 62, 621 (1989).

    Article  ADS  Google Scholar 

  34. A. Beyer, L. Maisenbacher, A. Matveev, et al., Science, 358, 79 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  35. A. D. Brandt, S. F. Cooper, C. Rasor, et al., Phys. Rev. Lett., 128, 023001 (2022).

    Article  ADS  Google Scholar 

  36. S. Thomas, H. Fleurbaey, S. Galtier, et al., Ann. Phys., 531, 1800363 (2019).

    Article  Google Scholar 

  37. E. P. Ippen and R. H. Stolen, Appl. Phys. Lett., 21, 539 (1972).

    Article  ADS  Google Scholar 

  38. R. G. Smiths, Appl. Opt., 11, 2489 (1972).

    Article  ADS  Google Scholar 

  39. G. Agrawal, Applications of Nonlinear Fiber Optics, Academic Press (2001).

  40. O. Terra, G. Grosche, and H. Schnatz, Opt. Express, 18, 16102 (2010).

    Article  ADS  Google Scholar 

  41. K. Predehl, G. Grosche, S. M. F. Raupach, et al., Science, 336, 441 (2012).

    Article  ADS  Google Scholar 

  42. Y. Koyamada, S. Sato, S. Nakamura, et al., J. Lightw. Technol., 22, 631 (2004).

    Article  ADS  Google Scholar 

  43. Y. Imai and N. Shimada, IEEE Photonics Technol. Lett., 5, 1335 (1993).

    Article  ADS  Google Scholar 

  44. H. Jiang, F. Kéfélian, P. Lemonde, et al., Opt. Express, 18, 3284 (2010).

    Article  ADS  Google Scholar 

  45. J. Zhu, X. Cheng, Y. Liu, et al., Photonics Res., 7, 01000008 (2019).

    Google Scholar 

  46. F. Irrera, L. Mattiuzzo, and D. Pozza, J. Appl. Phys., 63, 2882 (1988).

    Article  ADS  Google Scholar 

  47. F. Irrera and D. Pozza, J. Appl. Phys., 64, 4790 (1988).

    Article  ADS  Google Scholar 

  48. www.thorlabschina.cn/drawings/41d087ceb1f2fa01-4A197D97-AFB8-D3DC-1031B080D334D05D/PM780-HP-SpecSheet.pdf

  49. L. Jin, Y. Jiang, Y. Yao, et al., Opt. Express, 26, 18699 (2018).

    Article  ADS  Google Scholar 

  50. Y. Hao, Y. Yao, H. Shi, et al., Chin. Opt. Lett., 20, 120201 (2022).

    Article  ADS  Google Scholar 

  51. A. Didier, S. Ignatovich, E. Benkler, et al., Opt. Lett., 44, 1781 (2019).

    Article  ADS  Google Scholar 

  52. Y. Wang, X. Lu, B. Lu, et al., Appl. Sci., 8, 2194 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Liu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Zhang, L., Deng, X. et al. Explorative Research on 100 mW Magnitude Optical Frequency Transmission Via Fiber. J Russ Laser Res 44, 557–565 (2023). https://doi.org/10.1007/s10946-023-10163-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10163-5

Keywords

Navigation