Skip to main content
Log in

Evaluation of solvent property of air–water interface based on the fluorescence spectra of 1,2′-dinaphthylamine in the aqueous solution of ultrafine bubbles

  • Note
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Solvent property of air–water interface was evaluated based on the fluorescence spectra of 1,2′-dinaphthylamine in water containing ultrafine bubbles (average diameter: 103 nm, standard deviation: 38 nm). Among naphthylamine derivatives whose fluorescence spectra were responsive to microscopic hydrophobicity, 1,2′-dinaphthylamine (DN) was selected because its wavelength of the maximum emission (λmax) was significantly dependent on the concentration and microenvironment of the ultrafine bubble. The λmax value of DN in water was 486 nm, while it shifted to shorter wavelength (408 nm) in the presence of 1.09 × 109 mL−1 of ultrafine bubbles. The shift of λmax value indicates that DN adsorbs on the surfaces of ultrafine bubbles and exists in hydrophobic region rather than in bulk water. By comparing with the λmax values in different solvents, the surface of ultrafine bubble was found to have similar solvent property to ethyl ether or ethyl acetate that are widely used as extracting solvents for hydrophobic organic compounds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The results of this study may provide quantitative information on the area of the air-water interface or the volume of the interfacial region, which is useful for the use of ultrafine bubbles as a reaction medium.

References

  1. H. Mohwald, Phospholipid and phospholipid-protein monolayers at the air/water interface. Annu. Rev. Phys. Chem. 41, 441–476 (1990). https://doi.org/10.1146/annurev.pc.41.100190.002301

    Article  ADS  PubMed  CAS  Google Scholar 

  2. H.M. McConnell, Structures and transitions in lipid monolayers at the air-water interface. Annu. Rev. Phys. Chem. 42, 171–195 (1991). https://doi.org/10.1146/annurev.pc.42.100191.001131

    Article  ADS  CAS  Google Scholar 

  3. C.H. Chang, E.I. Franses, Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms. Colloid Surf. A Physicochem. Eng. Aspects 100, 1–45 (1995). https://doi.org/10.1016/0927-7757(94)03061-4

    Article  CAS  Google Scholar 

  4. J. Eastoe, J.S. Dalton, Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface. Adv. Colloid Interface Sci. 85, 103–144 (2000). https://doi.org/10.1016/S0001-8686(99)00017-2

    Article  PubMed  CAS  Google Scholar 

  5. H. Wang, E. Borguet, K.B. Eisenthal, Polarity of liquid interfaces by second harmonic generation spectroscopy. J. Phys. Chem. A 101, 713–718 (1997). https://doi.org/10.1021/jp9806563

    Article  CAS  Google Scholar 

  6. H. Wang, E. Borguet, K.B. Eisenthal, Generalized interface polarity scale based on second harmonic spectroscopy. J. Phys. Chem. B 102, 4927–4932 (1998). https://doi.org/10.1021/jp9806563

    Article  CAS  Google Scholar 

  7. S. Sen, S. Yamaguchi, T. Tahara, Different molecules experience different polarities at the air/water interface. Angew. Chem. Int. Ed. 48, 6439–6442 (2009). https://doi.org/10.1002/anie.200901094

    Article  CAS  Google Scholar 

  8. K. Kodama, M. Oiwa, T. Saitoh, Purification of rhodamine B by alcohol-modified air bubble flotation. Bull. Chem. Soc. Jpn 94, 1210–1214 (2021). https://doi.org/10.1246/bcsj.20200395

    Article  CAS  Google Scholar 

  9. K. Kodama, T. Saitoh, Surfactant-free air bubble flotation–coagulation for the rapid purification of chloroquine. Anal. Sci. 39, 43–49 (2022). https://doi.org/10.1007/s44211-022-00196-2

    Article  PubMed  CAS  Google Scholar 

  10. K. Kodama, N.T.T. Thao, T. Saitoh, Effect of air bubbles on the membrane filtration of rhodamine B. Anal. Sci. (2023). https://doi.org/10.1007/s44211-023-00366-w

    Article  PubMed  Google Scholar 

  11. K. Terasaka, K. Yasui, W. Kanematsu, N. Aya, Ultrafine bubbles (Jenny Stanford Publishing, New York, 2021).https://doi.org/10.1201/9781003141952

  12. S. Tanaka, Y. Naruse, K. Terasaka, S. Fujioka, Concentration and dilution of ultrafine bubbles in water. Colloids Interfaces 4, 50 (2020). https://doi.org/10.3390/colloids4040050

    Article  CAS  Google Scholar 

  13. D. Nieva-Gomez, J. Konisky, R.B. Gennis, Membrane changes in Escherichia coli induced by colicin Ia and agents known to disrupt energy transduction. Biochemistry 15, 2747–2753 (1976). https://doi.org/10.1021/bi00658a006

    Article  PubMed  CAS  Google Scholar 

  14. S. Ozeki, K. Tejima, Drug interactions. V. Binding of basic compounds to bovine serum albumin by fluorescent probe technique. Chem. Pharm. Bull. 27, 638–646 (1979). https://doi.org/10.1248/cpb.27.638

    Article  CAS  Google Scholar 

  15. E.G. Sedgwick, P.D. Bragg, Distinct phases of the fluorescence response of the lipophilic probe N-phenyl-1-naphthylamine in intact cells and membrane vesicles of Escherichia coli. Biochim. Biophys. Acta 894, 499–506 (1987). https://doi.org/10.1016/0005-2728(87)90129-0

    Article  PubMed  CAS  Google Scholar 

  16. R.M.M. Brito, W.L.C. Vaz, Determination of the critical micelle concentration of surfactants using the fluorescent probe N-phenyl-1-naphthylamine. Anal. Biochem. 152, 250–255 (1986). https://doi.org/10.1016/0003-2697(86)90406-9

    Article  PubMed  CAS  Google Scholar 

  17. T. Saitoh, K. Taguchi, M. Hiraide, Evaluation of hydrophobic properties of sodium dodecylsulfate/γ-alumina admicelles based on fluorescence spectra of N-phenyl-1-naphthylamine. Anal. Chim. Acta 454, 203–208 (2002). https://doi.org/10.1016/S0003-2670(01)01575-6

    Article  CAS  Google Scholar 

  18. T. Saitoh, K. Shibata, M. Hiraide, Rapid removal and photodegradation of tetracycline in water by surfactant-assisted coagulation-sedimentation method. J. Environ. Chem. Eng. 2, 1852–1858 (2014). https://doi.org/10.1016/j.jece.2014.08.005

    Article  CAS  Google Scholar 

  19. T. Saitoh, T. Shibayama, Removal and degradation of β-lactam antibiotics in water using didodecyldimethylammonium bromide-modified montmorillonite organoclay. J. Hazard. Mater. 317, 677–685 (2016). https://doi.org/10.1016/j.jhazmat.2016.06.003

    Article  PubMed  CAS  Google Scholar 

  20. P. Jungwirth, D.J. Tobias, Ions at the air/water interface. J. Phys. Chem. B 106, 6361–6373 (2002). https://doi.org/10.1021/jp020242g

    Article  CAS  Google Scholar 

  21. P. Jungwirth, D.J. Tobias, Specific ion effects at the air/water interface. Chem. Rev. 106, 1259–1281 (2006). https://doi.org/10.1021/cr0403741

    Article  PubMed  CAS  Google Scholar 

  22. Y. Rao, M. Subir, E.A. McArthur, N.J. Turro, K.B. Eisenthal, Organic ions at the air/water interface. Chem. Phys. Lett. 477, 241–244 (2009). https://doi.org/10.1016/j.cplett.2009.07.011

    Article  ADS  CAS  Google Scholar 

  23. F.Y. Ushikubo, T. Furukawa, R. Nakagawa, M. Enari, Y. Makino, Y. Kawagoe, T. Shiina, S. Oshita, Evidence of the existence and the stability of nano-bubbles in water. Colloids Surf. A Physicochem. 361, 31–37 (2010). https://doi.org/10.1016/j.colsurfa.2010.03.005

    Article  CAS  Google Scholar 

  24. W. Kanematsu, T. Tuziuti, K. Yasui, The influence of storage conditions and container materials on the long term stability of bulk nanobubbles—consideration from a perspective of interactions between bubbles and surroundings. Chem. Eng. Sci. 219, 115594 (2020). https://doi.org/10.1016/j.ces.2020.115594

    Article  CAS  Google Scholar 

  25. X. Zhang, Q. Wang, Z. Wu, D. Tao, An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles. Int. J. Miner. Metall. Mater. 27, 152–161 (2020). https://doi.org/10.1007/s12613-019-1936-0

    Article  CAS  Google Scholar 

  26. S. Tanaka, K. Terasaka, S. Fujioka, Generation and long-term stability of ultrafine bubbles in water. Chem. Ing. Tech. (Weinh) 93, 168–179 (2021). https://doi.org/10.1002/cite.202000143

    Article  CAS  Google Scholar 

  27. B.H. Tan, H. An, C.-D. Oh, Stability of surface and bulk nanobubbles. Curr. Opin. Colloid Interface Sci. 53, 101428 (2021). https://doi.org/10.1016/j.cocis.2021.101428

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research (B) (22H02115). The authors are very grateful to Mr. Takuya Iwata (Nagoya University) for his kind support for the measurements of UFB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Saitoh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodama, K., Hattori, S., Yasuda, K. et al. Evaluation of solvent property of air–water interface based on the fluorescence spectra of 1,2′-dinaphthylamine in the aqueous solution of ultrafine bubbles. ANAL. SCI. 40, 341–345 (2024). https://doi.org/10.1007/s44211-023-00454-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00454-x

Keywords

Navigation