Skip to main content
Log in

Gum Arabic-mediated synthesis of silver nanoparticles for their applications as colorimetric and SERS-based detection of hydrogen peroxide

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We report on the one-step green method to synthesize Gum Arabic stabilized silver nanoparticles (GA-Ag NPs). The synthesized particles are monodispersed and in the size range of 15–20 nm. The synthesized Ag NPs are used as a colorimetric sensor for the detection of H2O2 and glucose with a detection limit of 11.7 nM and 0.13 µM, respectively. The sensor has also been used for the detection of H2O2 in water samples and glucose in human blood serum samples. The GA-Ag NPs decorated on filter paper have also shown excellent SERS activity for the detection of H2O2 with a detection limit of 0.56 µM.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  1. G. Georgiou, L. Masip, An overoxidation journey with a return ticket. Science 300(5619), 592–594 (2003)

    Article  PubMed  CAS  Google Scholar 

  2. S. Chen et al., In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Anal. Chem. 86(13), 6689–6694 (2014)

    Article  PubMed  CAS  Google Scholar 

  3. E. Nossol, A.J. Zarbin, A simple and innovative route to prepare a novel carbon nanotube/prussian blue electrode and its utilization as a highly sensitive H2O2 amperometric sensor. Adv. Func. Mater. 19(24), 3980–3986 (2009)

    Article  CAS  Google Scholar 

  4. A.N. Naik et al., Nafion membrane incorporated with silver nanoparticles as optical test strip for dissolved hydrogen peroxide: Preparation, deployment and the mechanism of action. Sens. Actuators, B Chem. 255, 605–615 (2018)

    Article  CAS  Google Scholar 

  5. E.A. Veal, A.M. Day, B.A. Morgan, Hydrogen peroxide sensing and signaling. Mol. Cell 26(1), 1–14 (2007)

    Article  PubMed  CAS  Google Scholar 

  6. P. Kannan et al., Highly sensitive enzyme-free amperometric sensing of hydrogen peroxide in real samples based on Co 3 O 4 nanocolumn structures. Anal. Methods 11(17), 2292–2302 (2019)

    Article  ADS  CAS  Google Scholar 

  7. S. Manavalan et al., A robust Mn@ FeNi-S/graphene oxide nanocomposite as a high-efficiency catalyst for the non-enzymatic electrochemical detection of hydrogen peroxide. Nanoscale 12(10), 5961–5972 (2020)

    Article  PubMed  CAS  Google Scholar 

  8. C. Gong et al., Microperoxidase-11@ PCN-333 (Al)/three-dimensional macroporous carbon electrode for sensing hydrogen peroxide. Sens. Actuators, B Chem. 239, 890–897 (2017)

    Article  CAS  Google Scholar 

  9. S. Basiri, A. Mehdinia, A. Jabbari, A sensitive triple colorimetric sensor based on plasmonic response quenching of green synthesized silver nanoparticles for determination of Fe2+, hydrogen peroxide, and glucose. Colloids Surf. A 545, 138–146 (2018)

    Article  CAS  Google Scholar 

  10. L. Zhang, L. Li, Colorimetric detection of hydrogen peroxide using silver nanoparticles with three different morphologies. Anal. Methods 8(37), 6691–6695 (2016)

    Article  CAS  Google Scholar 

  11. Y. Song, W. Wei, X. Qu, Colorimetric biosensing using smart materials. Adv. Mater. 23(37), 4215–4236 (2011)

    Article  PubMed  CAS  Google Scholar 

  12. L. Sun et al., Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sens. Actuators, B Chem. 239, 848–856 (2017)

    Article  CAS  Google Scholar 

  13. Z. Chen et al., Application of triangular silver nanoplates for colorimetric detection of H2O2. Sens. Actuators, B Chem. 220, 314–317 (2015)

    Article  CAS  Google Scholar 

  14. L. Wang et al., CuO nanoparticles as haloperoxidase-mimics: Chloride-accelerated heterogeneous Cu-Fenton chemistry for H2O2 and glucose sensing. Sens. Actuators, B Chem. 287, 180–184 (2019)

    Article  CAS  Google Scholar 

  15. Z. Xu, G. Hu, Simple and green synthesis of monodisperse silver nanoparticles and surface-enhanced Raman scattering activity. RSC Adv. 2(30), 11404–11409 (2012)

    Article  ADS  CAS  Google Scholar 

  16. K. Sharma et al., Electrochemical Sensing Platform based on Greenly Synthesized Gum Arabic Stabilized Silver Nanoparticles for Hydrogen Peroxide and Glucose. J. Electrochem. Soc. 169(12), 127519 (2022)

    Article  ADS  CAS  Google Scholar 

  17. D. Li, R. Liang, A. Fan, Ultrasensitive colorimetric detection of tetracyclines based on in-situ growth of gold nanoflowers. Anal. Sci. 39(8), 1223–1231 (2023)

    Article  PubMed  CAS  Google Scholar 

  18. M. Takayanagi et al., Colorimetric Determination of Formaldehyde Using 1,3-Diphenyl-2-thiohydantoin and Sodium Hydroxide. Anal. Sci. 1(2), 181–184 (1985)

    Article  CAS  Google Scholar 

  19. N. Sui et al., Colorimetric Detection of Ascorbic Acid Based on the Trigger of Gold Nanoparticles Aggregation by Cr(III) Reduced from Cr(VI). Anal. Sci. 33(8), 963–967 (2017)

    Article  PubMed  CAS  Google Scholar 

  20. C. Li et al., Towards practical and sustainable SERS: a review of recent developments in the construction of multifunctional enhancing substrates. Journal of Materials Chemistry C 9(35), 11517–11552 (2021)

    Article  CAS  Google Scholar 

  21. V. Veeramani et al., Heteroatom-enriched porous carbon/nickel oxide nanocomposites as enzyme-free highly sensitive sensors for detection of glucose. Sens. Actuators, B Chem. 221, 1384–1390 (2015)

    Article  CAS  Google Scholar 

  22. A. Galant, R. Kaufman, J. Wilson, Glucose: Detection and analysis. Food Chem. 188, 149–160 (2015)

    Article  PubMed  CAS  Google Scholar 

  23. L. Lin et al., Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose. Anal. Chim. Acta 869, 89–95 (2015)

    Article  ADS  PubMed  CAS  Google Scholar 

  24. Q. Liu et al., One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H2O2 and glucose colorimetric detection. Sens. Actuators, B Chem. 240, 726–734 (2017)

    Article  CAS  Google Scholar 

  25. Y. Song et al., Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 22(19), 2206–2210 (2010)

    Article  PubMed  CAS  Google Scholar 

  26. C. Lertvachirapaiboon et al., Optical sensing platform for the colorimetric determination of silver nanoprisms and its application for hydrogen peroxide and glucose detections using a mobile device camera. Anal. Sci. 35(3), 271–276 (2019)

    Article  PubMed  CAS  Google Scholar 

  27. N. Yue, D. Li, A. Fan, A Simple Colorimetric Analytical Assay for the Determination of Tetracyclines Based on In-situ Generation of Gold Nanoparticles Coupling with a Gold Staining Technique. Anal. Sci. 37(11), 1583–1587 (2021)

    Article  PubMed  CAS  Google Scholar 

  28. P. Sharma et al., Thiol terminated chitosan capped silver nanoparticles for sensitive and selective detection of mercury (II) ions in water. Sens. Actuators, B Chem. 268, 310–318 (2018)

    Article  CAS  Google Scholar 

  29. K. Devarayan, B.-S. Kim, Reversible and universal pH sensing cellulose nanofibers for health monitor. Sens. Actuators, B Chem. 209, 281–286 (2015)

    Article  CAS  Google Scholar 

  30. M. Mourya et al., Ag-Nanoparticles-Embedded Filter Paper: An Efficient Dip Catalyst for Aromatic Nitrophenol Reduction, Intramolecular Cascade Reaction, and Methyl Orange Degradation. ChemistrySelect 3(10), 2882–2887 (2018)

    Article  CAS  Google Scholar 

  31. S. Majhi et al., Development of silver nanoparticles decorated on functional glass slide as highly efficient and recyclable dip catalyst. ChemistrySelect 5(40), 12365–12370 (2020)

    Article  CAS  Google Scholar 

  32. K. Sharma et al., Silver nanoparticles decorated on graphene oxide modified polyester fabric: Catalytic reduction of 4-nitrophenol, organic dyes and SERS application. J. Phys. Chem. Solids 165, 110640 (2022)

    Article  CAS  Google Scholar 

  33. K. Sharma et al., Fabrication of Reduced Graphene Oxide-Silver/Polyvinyl Alcohol Nanocomposite Film for Reduction of 4-Nitrophenol and Methyl Orange Dye. ChemistrySelect 6(24), 6071–6076 (2021)

    Article  CAS  Google Scholar 

  34. R. Janardhanan et al., Synthesis and surface chemistry of nano silver particles. Polyhedron 28(12), 2522–2530 (2009)

    Article  CAS  Google Scholar 

  35. P. Vasileva et al., Synthesis of starch-stabilized silver nanoparticles and their application as a surface plasmon resonance-based sensor of hydrogen peroxide. Colloids Surf. A 382(1–3), 203–210 (2011)

    Article  CAS  Google Scholar 

  36. O.S. Oluwafemi et al., A facile completely ‘green’size tunable synthesis of maltose-reduced silver nanoparticles without the use of any accelerator. Colloids Surf. B 102, 718–723 (2013)

    Article  CAS  Google Scholar 

  37. P.A. Williams, G.O. Phillips, Gum arabic, in Handbook of hydrocolloids. (Elsevier, 2021), pp.627–652

    Chapter  Google Scholar 

  38. K. Juby et al., Silver nanoparticle-loaded PVA/gum acacia hydrogel: Synthesis, characterization and antibacterial study. Carbohyd. Polym. 89(3), 906–913 (2012)

    Article  CAS  Google Scholar 

  39. C. Dong et al., Facile and one-step synthesis of monodisperse silver nanoparticles using gum acacia in aqueous solution. J. Mol. Liq. 196, 135–141 (2014)

    Article  CAS  Google Scholar 

  40. Y.M. Mohan et al., Preparation of acacia-stabilized silver nanoparticles: A green approach. J. Appl. Polym. Sci. 106(5), 3375–3381 (2007)

    Article  CAS  Google Scholar 

  41. Haider, A.J., A.L. Abed, and D.S. Ahmed, Formation Silver Nanoparticles of Different Size Using Different Reductants with AgNO3 Solution. Iraqi Journal of Science, 2016: p. 1203–1209.

  42. Beltrame, P., et al., Aerobic oxidation of glucose: II. Catalysis by colloidal gold. Applied Catalysis A: General, 2006. 297(1): p. 1–7.

  43. Wohlfahrt, G., et al., 1.8 and 1.9 Å resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes. Acta Crystallographica Section D: Biological Crystallography, 1999. 55(5): p. 969–977.

  44. J.H. Pazur, K. Kleppe, The oxidation of glucose and related compounds by glucose oxidase from Aspergillus niger. Biochemistry 3(4), 578–583 (1964)

    Article  PubMed  CAS  Google Scholar 

  45. S.B. Bankar et al., Glucose oxidase—an overview. Biotechnol. Adv. 27(4), 489–501 (2009)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

SM, AK, and SS thank BHU, Varanasi for PhD fellowships. CSPT and DG thank Banaras Hindu University, Varanasi for providing seed grant under IoE scheme (Dev. Scheme No. 6031). The authors also acknowledge IIT–BHU, and department of Chemistry for the use of instrumentation facilities.

Author information

Authors and Affiliations

Authors

Contributions

SM: data curation, formal analysis. AK: visualization, investigation. SS: resources.: CSPT: investigation, validation, writing—reviewing and editing, DG: conceptualization, methodology, project administration.

Corresponding authors

Correspondence to Chandra Shekhar Pati Tripathi or Debanjan Guin.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7746 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majhi, S., Kumar, A., Sharma, S. et al. Gum Arabic-mediated synthesis of silver nanoparticles for their applications as colorimetric and SERS-based detection of hydrogen peroxide. ANAL. SCI. 40, 271–283 (2024). https://doi.org/10.1007/s44211-023-00455-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00455-w

Keywords

Navigation