Skip to main content
Log in

DNA Instability in Neurons: Lifespan Clock and Driver of Evolution

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In the last ten years, the discovery of neuronal DNA postmitotic instability has changed the theoretical landscape in neuroscience and, more broadly, biology. In 2003, A. M. Olovnikov suggested that neuronal DNA is the “initial substrate of aging”. Recent experimental data have significantly increased the likelihood of this hypothesis. How does neuronal DNA accumulate damage and in what genome regions? What factors contribute to this process and how are they associated with aging and lifespan? These questions will be discussed in the review. In the course of Metazoan evolution, the instability of neuronal DNA has been accompanied by searching for the pathways to reduce the biological cost of brain activity. Various processes and activities, such as sleep, evolutionary increase in the number of neurons in the vertebrate brain, adult neurogenesis, distribution of neuronal activity, somatic polyploidy, and RNA editing in cephalopods, can be reconsidered in the light of the trade-off between neuronal plasticity and DNA instability in neurons. This topic is of considerable importance for both fundamental neuroscience and translational medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DSB:

double-strand DNA break

indel:

small insertion or deletion

NMDA:

N-methyl-D-aspartate

Parp1:

poly(ADP-ribose) polymerase 1

SNV:

single nucleotide variant

SSB:

single-strand DNA break

Topo IIβ:

topoisomerase Iiβ

References

  1. Olovnikov, A. M. (1971) Principle of marginotomy in template synthesis of polynucleotides, Dokl. Akad. Nauk SSSR, 201, 1496-1499.

    CAS  PubMed  Google Scholar 

  2. Olovnikov, A. M. (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon, J. Theor. Biol., 41, 181-190, https://doi.org/10.1016/0022-5193(73)90198-7.

    Article  CAS  PubMed  Google Scholar 

  3. Olovnikov, A. M. (2022) Planetary metronome as a regulator of lifespan and aging rate: the metronomic hypothesis, Biochemistry (Moscow), 87, 2019-2022, https://doi.org/10.1134/S0006297922120197.

    Article  Google Scholar 

  4. Olovnikov, A. M. (2003) The redusome hypothesis of aging and the control of biological time during individual development, Biochemistry (Moscow), 68, 7-41, https://doi.org/10.1023/A:1022185100035.

    Article  Google Scholar 

  5. Dyakonova, V. E. (2020) Neuronal counter of the life span: does it exist? Russ. J. Dev. Biol., 51, 197-200, https://doi.org/10.1134/S1062360420030066.

    Article  Google Scholar 

  6. Suberbielle, E., Sanchez, P. E., Kravitz, A. V., Wang, X., Ho, K., Eilertson, K., Devidze, N., Kreitzer, A. C., and Mucke, L. (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β, Nat. Neurosci., 16, 613-621, https://doi.org/10.1038/nn.3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Madabhushi, R., Gao, F., Pfenning, A. R., Pan, L., Yamakawa, S., Seo, J., Rueda, R., Phan, T. X., Yamakawa, H., Pao, P. C., Stott, R. T., Gjoneska, E., Nott, A., Cho, S., Kellis, M., and Tsai, L. H. (2015) Activity-induced DNA breaks govern the expression of neuronal early-response genes, Cell, 161, 1592-1605, https://doi.org/10.1016/j.cell.2015.05.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Delint-Ramirez, I., Konada, L., Heady, L., Rueda, R., Jacome, A. S. V., Marlin, E., Marchioni, C., Segev, A., Kritskiy, O., Yamakawa, S., Reiter, A. H., Tsai, L. H., and Madabhushi, R. (2022) Calcineurin dephosphorylates topoisomerase IIβ and regulates the formation of neuronal-activity-induced DNA breaks, Mol. Cell, 82, 3794-3809.e8, https://doi.org/10.1016/j.molcel.2022.09.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shadfar, S., Parakh, S., Jamali, M. S., and Atkin, J. D. (2023) Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases, Transl. Neurodegener., 12, 18, https://doi.org/10.1186/s40035-023-00350-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu, W., Hill, S. E., Nathan, W. J., Paiano, J., Callen, E., Wang, D., Shinoda, K., van Wietmarschen, N., Colón-Mercado, J. M., Zong, D., De Pace, R., Shih, H. Y., Coon, S., Parsadanian, M., Pavani, R., Hanzlikova, H., Park, S., Jung, S. K., McHugh, P. J., Canela, A., Chen, C., Casellas, R., Caldecott, K. W., Ward, M. E., and Nussenzweig, A. (2021) Neuronal enhancers are hotspots for DNA single-strand break repair, Nature, 593, 440-444, https://doi.org/10.1038/s41586-021-03468-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dileep, V., and Tsai, L. H. (2021) Neuronal enhancers get a break, Neuron, 109, 1766-1768, https://doi.org/10.1016/j.neuron.2021.05.008.

    Article  CAS  PubMed  Google Scholar 

  12. Reid, D. A., Reed, P. J., Schlachetzki, J. C. M., Nitulescu, I. I., Chou, G., Tsui, E. C., Jones, J. R., Chandran, S., Lu, A. T., McClain, C. A., Ooi, J. H., Wang, T. W., Lana, A. J., Linker, S. B., Ricciardulli, A. S., Lau, S., Schafer, S. T., Horvath, S., Dixon, J. R., Hah, N., Glass, C. K., and Gage, F. H. (2021) Incorporation of a nucleoside analog maps genome repair sites in postmitotic human neurons, Science, 372, 91-94, https://doi.org/10.1126/science.abb9032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krushinskii, A. L. (2013) Biophysical aspects of cognitive activity, in Formation of Animal Behavior in the Norm and Pathology; 100th Anniversary of L. V. Krushinskii (1911-1984), Languages of Slavic Culture (Poletaeva, I. I., and Zorina, Z. A., eds.) Moscow, p. 424-436.

  14. Krushinskii, A. L. (2015) The cost of solution: biophysical prerequisites and possible evolutionary consequences, Russ. Zhurn. Kognit. Nauki, 2, 52-61.

    Google Scholar 

  15. Navabpour, S., Rogers, J., McFadden, T., and Jarome, T. J. (2020) DNA double-strand breaks are a critical regulator of fear memory reconsolidation, Int. J. Mol. Sci., 21, 8995, https://doi.org/10.3390/ijms21238995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weber Boutros, S., Unni, V. K., and Raber, J. (2022) An adaptive role for DNA double-strand breaks in hippocampus-dependent learning and memory, Int. J. Mol. Sci., 23, 8352, https://doi.org/10.3390/ijms23158352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Konopka, A., and Atkin, J. D. (2022) The role of DNA damage in neural plasticity in physiology and neurodegeneration, Front. Cell Neurosci., 16, 836885, https://doi.org/10.3389/fncel.2022.836885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Welch, G., and Tsai, L. H. (2022) Mechanisms of DNA damage-mediated neurotoxicity in neurodegenerative disease, EMBO Rep., 23, e54217, https://doi.org/10.15252/embr.20215421.

    Article  CAS  PubMed Central  Google Scholar 

  19. Pollina, E. A., Gilliam, D. T., Landau, A. T., Lin, C., Pajarillo, N., Davis, C. P., Harmin, D. A., Yap, E. L., Vogel, I. R., Griffith, E. C., Nagy, M. A., Ling, E., Duffy, E. E., Sabatini, B. L., Weitz, C. J., and Greenberg, M. E. (2023) A NPAS4–NuA4 complex couples synaptic activity to DNA repair, Nature, 614, 732-741, https://doi.org/10.1038/s41586-023-05711-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hazen, J. L., Faust, G. G., Rodriguez, A. R., Ferguson, W. C., Shumilina, S., Clark, R. A., Boland, M. J., Martin, G., Chubukov, P., Tsunemoto, R. K., Torkamani, A., Kupriyanov, S., Hall, I. M., and Baldwin, K. K. (2016) The complete genome sequences, unique mutational spectra, and developmental potency of adult neurons revealed by cloning, Neuron, 89, 1223-1236, https://doi.org/10.1016/j.neuron.2016.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Evrony, G. D., Cai, X., Lee, E., Hills, L. B., Elhosary, P. C., Lehmann, H. S., Parker, J. J., Atabay, K. D., Gilmore, E. C., Poduri, A., Park, P. J., and Walsh, C. A. (2012) Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain, Cell, 151, 483-496, https://doi.org/10.1016/j.cell.2012.09.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bizzotto, S., and Walsh, C. A. (2022) Genetic mosaicism in the human brain: from lineage tracing to neuropsychiatric disorders, Nat. Rev. Neurosci., 23, 275-286, https://doi.org/10.1038/s41583-022-00572-x.

    Article  CAS  PubMed  Google Scholar 

  23. Luquette, L. J., Miller, M. B., Zhou, Z., Bohrson, C. L., Zhao, Y., Jin, H., Gulhan, D., Ganz, J., Bizzotto, S., Kirkham, S., Hochepied, T., Libert, C., Galor, A., Kim, J., Lodato, M. A., Garaycoechea, J. I., Gawad, C., West, J., Walsh, C. A., and Park, P. J. (2022) Single-cell genome sequencing of human neurons identifies somatic point mutation and indel enrichment in regulatory elements, Nat. Genet., 54, 1564-1571, https://doi.org/10.1038/s41588-022-01180-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lodato, M., Rodin, R. E., Bohrson, C. L., Coulter, M. E., Barton, A. R., Kwon, M., Sherman, M. A., Vitzthum, C. M., Luquette, L. J., Yandava, C. N., Yang, P., Chittenden, T. W., Hatem, N. E., Ryu, S. C., Woodworth, M. B., Park, P. J., and Walsh, C. A. (2018) Aging and neurodegeneration are associated with increased mutations in single human neurons, Science, 359, 555-559, https://doi.org/10.1126/science.aao4426.

    Article  CAS  PubMed  Google Scholar 

  25. Li, X., Cao, G., Liu, X., Tang, T. S., Guo, C., and Liu, H. (2022) Polymerases and DNA repair in neurons: implications in neuronal survival and neurodegenerative diseases, Front. Cell. Neurosci., 16, 852002, https://doi.org/10.3389/fncel.2022.852002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scheijen, E. E. M., and Wilson, D. M. 3rd. (2022) Genome integrity and neurological disease, Int. J. Mol. Sci., 23, 4142, https://doi.org/10.3390/ijms23084142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zullo, J. M., Drake, D., Aron, L., O’Hern, P., Dhamne, S. C., Davidsohn, N., Mao, C. A., Klein, W. H., Rotenberg, A., Bennett, D. A., Church, G. M., Colaiácovo, M. P., and Yankner, B. A. (2019) Regulation of lifespan by neural excitation and REST, Nature, 574, 359-364, https://doi.org/10.1038/s41586-019-1647-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lu, T., Aron, L., Zullo, J., Pan, Y., Kim, H., Chen, Y., Yang, T. H., Kim, H. M., Drake, D., Liu, X. S., Bennett, D. A., Colaiácovo, M. P., and Yankner, B. A. (2014) REST and stress resistance in ageing and Alzheimer’s disease, Nature, 507, 448-454, https://doi.org/10.1038/nature13163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cruces, M. P., González, E., Pimentel, E., Jiménez, E., and Sánchez, P. (2022) Relationship between lifespan and somatic mutation in D. melanogaster after treatment with chlorophyllin, Environ. Toxicol. Pharmacol., 93, 103891, https://doi.org/10.1016/j.etap.2022.103891.

    Article  CAS  PubMed  Google Scholar 

  30. Cagan, A., Baez-Ortega, A., Brzozowska, N., Abascal, F., Coorens, T. H. H., Sanders, M. A., Lawson, A. R. J., Harvey, L. M. R., Bhosle, S., Jones, D., Alcantara, R. E., Butler, T. M., Hooks, Y., Roberts, K., Anderson, E., Lunn, S., Flach, E., Spiro, S., Januszczak, I., Wrigglesworth, E., Jenkins, H., Dallas, T., Masters, N., Perkins, M. W., Deaville, R., Druce, M., Bogeska, R., Milsom, M. D., Neumann, B., Gorman, F., Constantino-Casas, F., Peachey, L., Bochynska, D., Smith, E. S. J., Gerstung, M., Campbell, P. J., Murchison, E. P., Stratton, M. R., and Martincorena, I. (2022) Somatic mutation rates scale with lifespan across mammals, Nature, 604, 517-524, https://doi.org/10.1038/s41586-022-04618-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shen, X., Song, S., Li, C., and Zhang, J. (2022) Synonymous mutations in representative yeast genes are mostly strongly non-neutral, Nature, 606, 725-731, https://doi.org/10.1038/s41586-022-04823-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zada, D., Bronshtein, I., Lerer-Goldshtein, T., Garini, Y., and Appelbaum, L. (2019) Sleep increases chromosome dynamics to enable reduction of accumulating DNA damage in single neurons, Nat. Commun., 10, 895, https://doi.org/10.1038/s41467-019-08806-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zada, D., Sela, Y., Matosevich, N., Monsonego, A., Lerer-Goldshtein, T., Nir, Y., and Appelbaum, L. (2021) Parp1 promotes sleep, which enhances DNA repair in neurons, Mol. Cell, 81, 4979-4993.e7, https://doi.org/10.1016/j.molcel.2021.10.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Akif’ev, A. P., and Potapenko, A. I. (2001) Nuclear genetic material as an initial substrate for animal aging, Genetika, 37, 1445-1458.

    PubMed  Google Scholar 

  35. Lombroso, C. (1892) The Man of Genius, F. Pavlenkov Publ., St. Petersburg.

  36. Gale, C. R., Batty, G. D., McIntosh, A. M., Porteous, D. J., Deary, I. J., and Rasmussen, F. (2013) Is bipolar disorder more common in highly intelligent people? A cohort study of a million men, Mol. Psychiatry, 18, 190-194, https://doi.org/10.1038/mp.2012.26.

    Article  CAS  PubMed  Google Scholar 

  37. Smith, D. J., Anderson, J., Zammit, S., Meyer, T. D., Pell, J. P., and Mackay, D. (2015) Childhood IQ and risk of bipolar disorder in adulthood: prospective birth cohort study, BJPsych. Open, 1, 74-80, https://doi.org/10.1192/bjpo.bp.115.000455.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Deary, I. J. (2012) Looking for “system integrity” in cognitive epidemiology, Gerontology, 58, 545-553, https://doi.org/10.1159/000341157.

    Article  PubMed  Google Scholar 

  39. Power, R. A., Steinberg, S., Bjornsdottir, G., Rietveld, C. A., Abdellaoui, A., Nivard, M. M., Johannesson, M., Galesloot, T. E., Hottenga, J. J., Willemsen, G., Cesarini, D., Benjamin, D. J., Magnusson, P. K., Ullén, F., Tiemeier, H., Hofman, A., van Rooij, F. J., Walters, G. B., Sigurdsson, E., Thorgeirsson, T. E., Ingason, A., Helgason, A., Kong, A., Kiemeney, L. A., Koellinger, P., Boomsma, D. I., Gudbjartsson, D., Stefansson, H., and Stefansson, K. (2015) Polygenic risk scores for schizophrenia and bipolar disorder predict creativity, Nat. Neurosci., 18, 953-955, https://doi.org/10.1038/nn.4040.

    Article  CAS  PubMed  Google Scholar 

  40. Demange, P. A., Malanchini, M., Mallard, T. T., Biroli, P., Cox, S. R., Grotzinger, A. D., Tucker-Drob, E. M., Abdellaoui, A., Arseneault, L., van Bergen, E., Boomsma, D. I., Caspi, A., Corcoran, D. L., Domingue, B. W., Harris, K. M., Ip, H. F., Mitchell, C., Moffitt, T. E., Poulton, R., Prinz, J. A., Sugden, K., Wertz, J., Williams, B. S., de Zeeuw, E. L., Belsky, D. W., Harden, K. P., and Nivard, M. G. (2021) Investigating the genetic architecture of noncognitive skills using GWAS-by-subtraction, Nat. Genet., 53, 35-44, https://doi.org/10.1038/s41588-020-00754-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zolotareva, N. N., Krushinskaia, N. L., Dmitrieva, I. L. (1987) Comparative characteristics of the metabolism of male Tryon rats (Tryon maze dull and Tryon maze bright) and the possibility of predicting their social status from biochemical indices, Dokl. Akad. Nauk SSSR, 292, 751-755.

    CAS  PubMed  Google Scholar 

  42. Semiokhina, A. F., Ochinskaia, E. I., Rubtsova, N. B., and Krushinskii, L. V. (1976) New in the studies of experimental neuroses caused by overexertion of the higher nervous activity, Dokl. Akad. Nauk SSSR, 231, 503-505.

    CAS  PubMed  Google Scholar 

  43. Khonicheva, N.M., Gulyaeva, N. V., Zhdanova, I. V., Obedin, A.B., Dmitrieva, I. L., and Krushinskaya, N. L. (1986) Behavioral type and and activity of superoxide dismutase in the rat brain (comparison of 2 rat strains), Byul. Eksp. Biol. Med., 102, 1619-1622, https://doi.org/10.1007/BF00840775.

    Article  Google Scholar 

  44. Amit, Z., and Smith, B. R. (1992) Differential ethanol intake in Tryon maze-bright and Tryon maze-dull rats: implications for the validity of the animal model of selectively bred rats for high ethanol consumption, Psychopharmacology, 108, 136-140, https://doi.org/10.1007/BF02245298.

    Article  CAS  PubMed  Google Scholar 

  45. Dyakonova, V. E. (2015) What is the cost of cognitive abilities? Russ. Zhurn. Kognit. Nauki, 2, 70-77.

    Google Scholar 

  46. Mery, F., and Kawecki, T. J. (2002) Experimental evolution of learning ability in fruit flies, Proc. Natl. Acad. Sci. USA, 99, 14274-14279, https://doi.org/10.1073/pnas.222371199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mery, F., and Kawecki, T. J. (2003) A fitness cost of learning ability in Drosophila melanogaster, Proc. R. Soc. Lond. B Biol. Sci., 270, 2465-2469, https://doi.org/10.1098/rspb.2003.2548.

    Article  Google Scholar 

  48. Mery, F., and Kawecki, T. J. (2005) A cost of long-term memory in Drosophila, Science, 308, 1148-1148, https://doi.org/10.1126/science.1111331.

    Article  CAS  PubMed  Google Scholar 

  49. Burger, J., Kolss, M., Pont, J., and Kawecki, T. J. (2008) Learning ability and longevity: A symmetrical evolutionary trade-off in Drosophila, Evolution, 62, 1294-1304, https://doi.org/10.1111/j.1558-5646.2008.00376.x.

    Article  PubMed  Google Scholar 

  50. Burns, J. G., Foucaud, J., and Mery, F. (2011) Costs of memory: lessons from ‘mini’ brains, Proc. R. Soc. Lond. B Biol. Sci., 278, 923-929, https://doi.org/10.1098/rsbl.2008.0514.

    Article  Google Scholar 

  51. Dalesman, S., and Lukowiak, K. (2012) How stress alters memory in ‘smart’ snails, PLoS One, 7, e32334, https://doi.org/10.1371/journal.pone.0032334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hughes, E., Shymansky, T., Swinton, E., Lukowiak, K. S., Swinton, C., Sunada, H., Protheroe, A., Phillips, I., and Lukowiak, K. (2017) Strain-specific differences of the effects of stress on memory in Lymnaea, J. Exp. Biol., 220, 891-899, https://doi.org/10.1242/jeb.149161.

    Article  PubMed  Google Scholar 

  53. Borodinova, A. A., and Balaban, P. M. (2020) Epigenetic regulation as a basis for long-term changes in the nervous system: in search of specificity mechanisms, Biochemistry (Moscow), 85, 994-966, https://doi.org/10.1134/S0006297920090023.

    Article  CAS  PubMed  Google Scholar 

  54. Borodinova, A. A., Kuznetsova, M. A., Alekseeva, V. S., and Balaban, P. M. (2019) Histone acetylation determines transcription of atypical protein kinases in rat neurons, Sci. Rep., 9, 4332, https://doi.org/10.1038/s41598-019-40823-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shimaji, K., Tomida, S., Yamaguchi, M. (2019) Regulation of animal behavior by epigenetic regulators, Front. Biosci. (Landmark Ed), 24, 1071-1084, https://doi.org/10.2741/4769.

    Article  CAS  PubMed  Google Scholar 

  56. Zuzina, A. B., Vinarskaya, A. K., and Balaban, P. M. (2020) Histone deacetylase inhibitors rescue the impaired memory in terrestrial snails, J. Comp. Physiol. A, 206, 639-649, https://doi.org/10.1007/s00359-020-01422-w.

    Article  CAS  Google Scholar 

  57. Levenson, J. M., and Sweatt, J. (2005) Epigenetic mechanisms in memory formation, Nat. Rev. Neurosci., 6, 108-118, https://doi.org/10.1038/nrn1604.

    Article  CAS  PubMed  Google Scholar 

  58. Reolon, G. K., Maurmann, N., Werenicz, A., Garcia, V. A., Schröder, N., Wood, M. A., and Roesler, R. (2011) Posttraining systemic administration of the histone deacetylase inhibitor sodium butyrate ameliorates aging-related memory decline in rats, Behav. Brain Res., 221, 329-332, https://doi.org/10.1016/j.bbr.2011.03.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Benjamin, J. S., Pilarowski, G. O., Carosso, G. A., Zhang, L., Huso, D. L., Goff, L. A., Vernon, H. J., Hansen, K. D., and Bjornsson, H. T. (2017) A ketogenic diet rescues hippocampal memory defects in a mouse model of Kabuki syndrome, Proc. Natl. Acad. Sci. USA, 114, 125-130, https://doi.org/10.1073/pnas.1611431114.

    Article  CAS  PubMed  Google Scholar 

  60. Bjornsson, H. T., Benjamin, J. S., Zhang, L., Weissman, J., Gerber, E. E., Chen, Y. C., Vaurio, R. G., Potter, M. C., Hansen, K. D., and Dietz, H. C. (2014) Histone deacetylase inhibition rescues structural and functional brain deficits in a mouse model of Kabuki syndrome, Sci. Transl. Med., 6, 256ra135, https://doi.org/10.1126/scitranslmed.3009278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sweatt, J. D. (2016) Neural plasticity and behavior – sixty years of conceptual advances, J. Neurochem., 139, 179-199, https://doi.org/10.1111/jnc.13580.

    Article  CAS  PubMed  Google Scholar 

  62. Espeso-Gil, S., Holik, A. Z., Bonnin, S., Jhanwar, S., Chandrasekaran, S., Pique-Regi, R., Albaigès-Ràfols, J., Maher, M., Permanyer, J., Irimia, M., Friedländer, M. R., Pons-Espinal, M., Akbarian, S., Dierssen, M., Maass, P. G., Hor, C. N., and Ossowski, S. (2021) Environmental enrichment induces epigenomic and genome organization changes relevant for cognition, Front. Mol. Neurosci., 14, 664912, https://doi.org/10.3389/fnmol.2021.664912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McGreevy, K. R., Tezanos, P., Ferreiro-Villar, I., Pallé, A., Moreno-Serrano, M., Esteve-Codina, A., Lamas-Toranzo, I., Bermejo-Álvarez, P., Fernández-Punzano, J., Martín-Montalvo, A., Montalbán, R., Ferrón, S. R., Radford, E. J., Fontán-Lozano, Á., and Trejo, J. L. (2019) Intergenerational transmission of the positive effects of physical exercise on brain and cognition, Proc. Natl. Acad. Sci. USA, 116, 10103-10112, https://doi.org/10.1073/pnas.1816781116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mezheritskiy, M. I., and Dyakonova, V. E. (2022) Direct and inherited epigenetic changes in the nervous system caused by intensive locomotion: possible adaptive significance, Russ. J. Dev. Biol., 53, 317-331, https://doi.org/10.1134/S1062360422050058.

    Article  Google Scholar 

  65. Yang, Y., Lagisz, M., Foo, Y. Z., Noble, D. W. A., Anwer, H., and Nakagawa, S. (2021) Beneficial intergenerational effects of exercise on brain and cognition: a multilevel meta-analysis of mean and variance, Biol. Rev., 96, 1504-1527, https://doi.org/10.1111/brv.12712.

    Article  PubMed  Google Scholar 

  66. Grassi, D., Franz, H., Vezzali, R., Bovio, P., Heidrich, S., Dehghanian, F., Lagunas, N., Belzung, C., Krieglstein, K., and Vogel, T. (2017) Neuronal activity, tgfβ-signaling and unpredictable chronic stress modulate transcription of gadd45 family members and DNA methylation in the hippocampus, Cereb. Cortex, 27, 4166-4181, https://doi.org/10.1093/cercor/bhx095.

    Article  PubMed  Google Scholar 

  67. Guo, J. U., Ma, D. K., Mo, H., Ball, M. P., Jang, M. H., Bonaguidi, M. A., Balazer, J. A., Eaves, H. L., Xie, B., Ford, E., Zhang, K., Ming, G. L., Gao, Y., and Song, H. (2011) Neuronal activity modifies the DNA methylation landscape in the adult brain, Nat. Neurosci., 14, 1345-1351, https://doi.org/10.1038/nn.2900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Su, Y., Shin, J., Zhong, C., Wang, S., Roychowdhury, P., Lim, J., Kim, D., Ming, G. L., and Song, H. (2017) Neuronal activity modifies the chromatin accessibility landscape in the adult brain, Nat. Neurosci., 20, 476-483, https://doi.org/10.1038/nn.4494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dumitrache, L. C., and McKinnon, P. J. (2022) Out of LINE: Transposons, genome integrity, and neurodegeneration, Neuron, 110, 3217-3219, https://doi.org/10.1016/j.neuron.2022.09.026.

    Article  CAS  PubMed  Google Scholar 

  70. Beagan, J. A., Pastuzyn, E. D., Fernandez, L. R., Guo, M. H., Feng, K., Titus, K. R., Chandrashekar, H., Shepherd, J. D., and Phillips-Cremins, J. E. (2020) Three-dimensional genome restructuring across timescales of activity-induced neuronal gene expression, Nat. Neurosci., 23, 707-717, https://doi.org/10.1038/s41593-020-0634-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Belgrad, J., and Fields, R. D. (2018) Epigenome interactions with patterned neuronal activity, Neuroscientist, 24, 471-485, https://doi.org/10.1177/1073858418760744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bocharova, L. S., Borovyagin, V. L., Dyakonova, T. L., Warton, S. S., and Veprintsev, B. N. (1972) Ultrastructure and RNA synthesis in a molluscan giant neuron under electrical stimulation, Brain Res., 36, 371-384, https://doi.org/10.1016/0006-8993(72)90741-x.

    Article  CAS  PubMed  Google Scholar 

  73. D’yakonova, T. L., Veprintsev, B. N., Chapas, A. F., and Brodskii, V. Y. (1966) Induction of RNA synthesis in neurons by electrical activity, Fed. Proc. Transl. Suppl., 25, 901-904.

    PubMed  Google Scholar 

  74. Lee, P. R., and Fields, R. D. (2021) Activity-dependent gene expression in neurons, Neuroscientist, 27, 355-366, https://doi.org/10.1177/1073858420943515.

    Article  CAS  PubMed  Google Scholar 

  75. Nandakumar, S., Grushko, O., and Buttitta, L. A. (2020) Polyploidy in the adult Drosophila brain, Elife, 9, e54385, https://doi.org/10.7554/eLife.54385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nandakumar, S., Rozich, E., and Buttitta, L. (2021) Cell cycle re-entry in the nervous system: from polyploidy to neurodegeneration, Front. Cell. Dev., 9, 698661, https://doi.org/10.3389/fcell.2021.698661.

    Article  Google Scholar 

  77. Borovyagin, V. L., and Sakharov, D. A. (1968) Ultrastructure of Giant Neurons of Tritonia. Atlas, Nauka, Moscow.

  78. Sakharov, D. A. (1974) Genealogy of Neurons, Nauka, Moscow.

  79. Kirsanova, I. A., and Anisimov, A. P. (2000) Somatic polyploidy in neurons from gastropod mollusks. I. Morphological characteristics of ganglia and neurons in the CNS of the snail Succinea lauta [in Russian], Tsitologiia, 42, 733-739.

    CAS  PubMed  Google Scholar 

  80. Arendt, T., Brückner, M. K., Mosch, B., and Lösche, A. (2010) Selective cell death of hyperploid neurons in Alzheimer’s disease, Am. J. Pathol., 177, 15-20, https://doi.org/10.2353/ajpath.2010.090955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Frade, J. M., and López-Sánchez, N. (2017) Neuronal tetraploidy in Alzheimer and aging, Aging (Albany NY), 9, 2014-2015, https://doi.org/10.18632/aging.101312.

    Article  PubMed  Google Scholar 

  82. Keinath, A. T., Mosser, C. A., and Brandon, M. P. (2022) The representation of context in mouse hippocampus is preserved despite neural drift, Nat. Commun., 13, 2415, https://doi.org/10.1038/s41467-022-30198-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rule, M. E., and O’Leary, T. (2022) Self-healing codes: How stable neural populations can track continually reconfiguring neural representations, Proc. Natl. Acad. Sci. USA, 119, e2106692119, https://doi.org/10.1073/pnas.2106692119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Markov, A., and Naimark, E. (2022) Human Evolution. Book 3. Bones, Genes and Culture, AST, CORPUS, Moscow.

  85. Ugryumov, M. V. (2010) Parkinson’s Disease: New Ideas on Pathogenesis, Disnostics, and Treatment, Motor Diseases: Medical and Social Aspects (Gusev, U. I., and Gekht, A. B., eds) APKiPPRO, Moscow.

  86. Epp, J. R., Silva, M. R., Köhler, S., Josselyn, S. A., and Frankland, P. W. (2016) Neurogenesis-mediated forgetting minimizes proactive interference, Nat. Commun., 7, 10838, https://doi.org/10.1038/ncomms10838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Moroz, L. L., Nikitin, M. A., Poličar, P. G., Kohn, A. B., and Romanova, D. Y. (2021) Evolution of glutamatergic signaling and synapses, Neuropharmacology, 199, 108740, https://doi.org/10.1016/j.neuropharm.2021.108740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Moroz, L. L. (2021) Multiple origins of neurons from secretory cells, Front. Cell. Dev. Biol., 9, 669087, https://doi.org/10.3389/fcell.2021.669087.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Moroz, L. L., Romanova, D. Y., and Kohn, A. B. (2021) Neural versus alternative integrative systems: molecular insights into origins of neurotransmitters, Philos. Trans. R. Soc. B, 376, 20190762, https://doi.org/10.1098/rstb.2019.0762.

    Article  CAS  Google Scholar 

  90. Sultan, F. A., and Sweatt, J. D. (2013) The role of the gadd45 family in the nervous system: a focus on neurodevelopment, neuronal injury, and cognitive neuroepigenetics, in Gadd45. Stress Sensor Genes (Liebermann, D. A., Hoffman, B., eds) Springer, pp. 81-121, https://doi.org/10.1007/978-1-4614-8289-5_6.

  91. Crowe, S. L., Movsesyan, V. A., Jorgensen, T. J., and Kondratyev, A. (2006) Rapid phosphorylation of histone H2A.X following ionotropic glutamate receptor activation, Eur. J. Neurosci., 23, 2351-2361, https://doi.org/10.1111/j.1460-9568.2006.04768.x.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Dyakonova, V. E. (2022) Origin and evolution of the nervous system: new data from comparative whole genome studies of multicellular animals, Russ. J. Dev. Biol., 53, 55-64, https://doi.org/10.1134/S1062360422010088.

    Article  CAS  Google Scholar 

  93. Liscovitch-Brauer, N., Alon, S., Porath, H. T., Elstein, B., Unger, R., Ziv, T., Admon, A., Levanon, E. Y., Rosenthal, J. J. C., and Eisenberg, E. (2017) Trade-off between transcriptome plasticity and genome evolution in cephalopods, Cell, 169, 191-202.e11, https://doi.org/10.1016/j.cell.2017.03.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Moldovan, M., Chervontseva, Z., Bazykin, G., and Gelfand, M. S. (2020) Adaptive evolution at mRNA editing sites in soft-bodied cephalopods, PeerJ, 8, e10456, https://doi.org/10.7717/peerj.10456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yablonovitch, A. L., Deng, P., Jacobson, D., and Li, J. B. (2017) The evolution and adaptation of RNA editing, PLoS Genet., 13, e1007064, https://doi.org/10.1371/journal.pgen.1007064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Garrett, S., and Rosenthal, J. J. C. (2012) RNA editing underlies temperature adaptation in K+ channels from polar octopuses, Science, 335, 848-851, https://doi.org/10.1126/science.1212795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I express my gratitude to A. I. Kalmykova, I. A. Olovnikov, and I. S. Zakharov for advice and comments during manuscript editing and to D. D. Vorontsov for help in preparing the figure.

Funding

This work was supported by the Russian Science Foundation (project no. 22-24-00318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varvara E. Dyakonova.

Ethics declarations

The author declares no conflict of interest. The work does not contain description of studies involving humans or animals performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyakonova, V.E. DNA Instability in Neurons: Lifespan Clock and Driver of Evolution. Biochemistry Moscow 88, 1719–1731 (2023). https://doi.org/10.1134/S0006297923110044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923110044

Keywords

Navigation