Skip to main content
Log in

A posteriori error analysis and adaptivity for a VEM discretization of the Navier–Stokes equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider the virtual element method (VEM) introduced by Beirão da Veiga et al. in 2016 for the numerical solution of the steady, incompressible Navier–Stokes equations; the method has arbitrary order \({k} \ge {2}\) and guarantees divergence-free velocities. For such discretization, we develop a residual-based a posteriori error estimator, which is a combination of standard terms in VEM analysis (residual terms, data oscillation, and VEM stabilization), plus some other terms originated by the VEM discretization of the nonlinear convective term. We show that a linear combination of the velocity and pressure errors is upper bounded by a multiple of the estimator (reliability). We also establish some efficiency results, involving lower bounds of the error. Some numerical tests illustrate the performance of the estimator and of its components while refining the mesh uniformly, yielding the expected decay rate. At last, we apply an adaptive mesh refinement strategy to the computation of the low-Reynolds flow around a square cylinder inside a channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data are available from the authors upon request.

References

  1. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013). https://doi.org/10.1142/S0218202512500492

  2. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods in Appl. Sci. 24(08), 1541–1573 (2014). https://doi.org/10.1142/S021820251440003X

  3. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: M2AN 51(2), 509–535 (2017). https://doi.org/10.1051/m2an/2016032

  4. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56(3), 1210–1242 (2018). https://doi.org/10.1137/17M1132811

  5. Wang, G., Wang, Y., He, Y.: A posteriori error estimates for the virtual element method for the Stokes problem. J. Sci. Comput. 84(37), 1–25 (2020). https://doi.org/10.1007/s10915-020-01281-2

    Article  MathSciNet  Google Scholar 

  6. Wang, Y., Wang, G., Wang, F.: An adaptive virtual element method for incompressible flow. Comput. Math. Appl. 101, 63–73 (2021). https://doi.org/10.1016/j.camwa.2021.09.012

    Article  MathSciNet  Google Scholar 

  7. Beirão da Veiga, L., Canuto, C., Nochetto, R.H., Vacca, G.: Equilibrium analysis of an immersed rigid leaflet by the virtual element method. Math. Models Methods Appl. Sci. 31(7), 1323–1372 (2021)

  8. Beirão da Veiga, L., Canuto, C., Nochetto, R.H., Vacca, G., Verani, M.: Adaptive VEM: stabilization-free a posteriori error analysis and contraction property. SIAM J. Numer. Anal. 61(2), 457–494 (2023). https://doi.org/10.1137/21M1458740

  9. Breuer, M., Bernsdorf, J., Zeiser, T., Durst, F.: Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume. Int. J. Heat Fluid Flow. 21(2), 186–196 (2000). https://doi.org/10.1016/S0142-727X(99)00081-8

    Article  Google Scholar 

  10. Beirão da Veiga, L., Manzini, G.: Residual a posteriori error estimation for the virtual element method for elliptic problems. ESAIM Math. Model. Numer. Anal. 49(2), 577–599 (2015). https://doi.org/10.1051/m2an/2014047

  11. Cangiani, A., Georgoulis, E.H., Pryer, T., Sutton, O.J.: A posteriori error estimates for the virtual element method. Numer. Math. 137, 857–893 (2017). https://doi.org/10.1007/s00211-017-0891-9

    Article  MathSciNet  Google Scholar 

  12. Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Eng. 142(1), 1–88 (1997). https://doi.org/10.1016/S0045-7825(96)01107-3

  13. Vacca, G.: An H1-conforming virtual element for Darcy and Brinkman equations. Mathematical Models and Methods in Applied Sciences 28(01), 159–194 (2018). https://doi.org/10.1142/S0218202518500057

    Article  MathSciNet  Google Scholar 

  14. Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley, Stuttgart (1996)

    Google Scholar 

  15. Kanschat, G., Schötzau, D.: Energy norm a posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations. Internat. J. Numer. Methods Fluids 57(9), 1093–1113 (2008). https://doi.org/10.1002/fld.1795

    Article  MathSciNet  Google Scholar 

  16. Sutton, O.J.: The virtual element method in 50 lines of MATLAB. Numer Algor 75, 1141–1159 (2017). https://doi.org/10.1007/s11075-016-0235-3

    Article  MathSciNet  Google Scholar 

  17. Gunzburger, M.D., Peterson, J.S.: Predictor and steplength selection in continuation methods for the Navier-Stokes equations. Comput Math Appl 22(8), 73–81 (1991). https://doi.org/10.1016/0898-1221(91)90015-V

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was done in the framework of the Italian MIUR Award “Dipartimenti di Eccellenza 2018-2022” granted to the Department of Mathematical Sciences, Politecnico di Torino (CUP: E11G18000350001). CC is a member of the Italian INdAM-GNCS research group and was supported by the MIUR PRIN Project 201752HKH8-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Canuto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by: Paul Houston

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canuto, C., Rosso, D. A posteriori error analysis and adaptivity for a VEM discretization of the Navier–Stokes equations. Adv Comput Math 49, 90 (2023). https://doi.org/10.1007/s10444-023-10081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10081-9

Keywords

Mathematics Subject Classification (2010)

Navigation