Skip to main content
Log in

Continuous-stage adapted exponential methods for charged-particle dynamics with arbitrary magnetic fields

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper is devoted to the numerical symplectic approximation of the charged-particle dynamics (CPD) with a homogeneous magnetic field and its extension to a non-homogeneous magnetic field. By utilizing continuous-stage methods and exponential integrators, a general class of symplectic methods is formulated for CPD under a homogeneous magnetic field. Based on the derived symplectic conditions, two practical symplectic methods up to order four are constructed where the error estimates show that the proposed second order scheme has a uniform accuracy in the position w.r.t. the strength of the magnetic field. Moreover, the symplectic methods are extended to CPD under a non-homogeneous magnetic field and three algorithms are formulated. Rigorous error estimates are investigated for the proposed methods and one method is proved to have a uniform accuracy in the position w.r.t. the strength of the magnetic field. Numerical experiments are provided for CPD under homogeneous and non-homogeneous magnetic fields, and the numerical results support the theoretical analysis and demonstrate the remarkable numerical behavior of our methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I., Kozlov, V.V., Neishtadt. A.I.: Mathematical aspects of classical and celestial mechanics. Springer, Berlin (1997)

  2. Bao, W., Su, C.: A uniformly and optimally accurate methods for the Zakharov system in the subsonic limit regime. SIAM J. Sci. Comput. 40, A929–A953 (2018)

    Article  MathSciNet  Google Scholar 

  3. Bao, W., Zhao, Q.: A structure-preserving parametric finite element method for surface diffusion. SIAM J. Numer. Anal. 59, 2775–2799 (2021)

    Article  MathSciNet  Google Scholar 

  4. Benettin, G., Sempio, P.: Adiabatic invariants and trapping of a point charge in a strong nonuniform magnetic field. Nonlinearity 7, 281–304 (1994)

    Article  MathSciNet  Google Scholar 

  5. Blanes, S., Iserles, A.: Explicit adaptive symplectic integrators for solving Hamiltonian systems. Celest. Mech. Dyn. Astron. 114, 297–317 (2012)

    Article  MathSciNet  Google Scholar 

  6. Blanes, S., Iserles, A., MacNamara, S.: Positivity-preserving methods for ordinary differential equations. ESAIM Math. Model. Number. Anal. 56, 1843–1870 (2022)

    Article  MathSciNet  Google Scholar 

  7. Boris, J.P.: Relativistic plasma simulation-optimization of a hybird code. In: Proceeding of fourth conference on numerical simulations of plasmas, pp. 3-67 (1970)

  8. Brizard, A.J., Hahm, T.S.: Foundations of nonlinear gyrokinetic theory. Rev. Modern Phys. 79, 421–468 (2007)

    Article  MathSciNet  Google Scholar 

  9. Brugnano, L., Iavernaro, F., Zhang, R.: Arbitrarily high-order energy-preserving methods for simulating the gyrocenter dynamics of charged particles. J. Comput. Appl. Math. 380, 112994 (2020)

    Article  MathSciNet  Google Scholar 

  10. Brugnano, L., Montijano, J.I., Rándz, L.: High-order energy-conserving line integral methods for charged particle dynamics. J. Comput. Phys. 396, 209–227 (2019)

    Article  MathSciNet  Google Scholar 

  11. Cary, J.R., Brizard, A.J.: Hamiltonian theory of guiding-center motion. Rev. Modern Phys. 81, 693–738 (2009)

    Article  MathSciNet  Google Scholar 

  12. Chartier, Ph., Crouseilles, N., Lemou, M., Méhats, F., Zhao, X.: Uniformly accurate methods for Vlasov equations with non-homogeneous strong magnetic field. Math. Comp. 88, 2697–2736 (2019)

    Article  MathSciNet  Google Scholar 

  13. Chartier, Ph., Crouseilles, N., Lemou, M., Méhats, F.: Zhao, X.: Uniformly accurate methods for three dimensional Vlasov equations under strong magnetic field with varying direction. SIAM J. Sci. Comput. 42, B520-B547 (2020)

  14. Feng, K.: On difference schemes and symplectic geometry. In: Proceedings of the 1984 Beijing Symposium on diferential geometry and differential equations, (Edited by K. Feng), pp. 42-58. Science Press, Beijing (1985)

  15. Filbet, F., Rodrigues, M.: Asymptotically stable particle-in-cell methods for the Vlasov-Poisson system with a strong external magnetic field. SIAM J. Numer. Anal. 54, 1120–1146 (2016)

    Article  MathSciNet  Google Scholar 

  16. Filbet, F., Rodrigues, M.: Asymptotically preserving particle-in-cell methods for inhomogeneous strongly magnetized plasmas. SIAM J. Numer. Anal. 55, 2416–2443 (2017)

    Article  MathSciNet  Google Scholar 

  17. Filbet, F., Xiong, T., Sonnendrücker, E.: On the Vlasov-Maxwell system with a strong magnetic field. SIAM J. Appl. Math. 78, 1030–1055 (2018)

    Article  MathSciNet  Google Scholar 

  18. Frénod, E., Hirstoaga, S.A., Lutz, M., Sonnendrücker, E.: Long time behavior of an exponential integrator for a Vlasov-Possion system with strong magnetic field. Commun. Comput. Phys. 18, 263–296 (2015)

    Article  MathSciNet  Google Scholar 

  19. Hairer, E.: Energy-preserving variant of collocation methods. JNAIAM J. Numer. Anal. Ind. Appl. Math. 5, 73-84 (2010)

  20. Hairer, E., Lubich, Ch.: Long-term analysis of a variational integrator for charged-particle dynamics in a strong magnetic field. Numer. Math. 144, 699–728 (2020)

    Article  MathSciNet  Google Scholar 

  21. Hairer, E., Lubich, Ch.: Energy behaviour of the Boris method for charged-particle dynamics. BIT 58, 969–979 (2018)

    Article  MathSciNet  Google Scholar 

  22. Hairer, E., Lubich, Ch.: Symmetric multistep methods for charged-particle dynamics. SMAI J. Comput. Math. 3, 205–218 (2017)

    Article  MathSciNet  Google Scholar 

  23. Hairer, E., Lubich, Ch., Shi, Y.: Large-stepsize integrators for charged-particle dynamics over multiple time scales. Numer. Math. 151, 659–691 (2022)

    Article  MathSciNet  Google Scholar 

  24. Hairer, E., Lubich, Ch., Wanner, G.: Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, 2nd edn. Springer-Verlag, Berlin, Heidelberg (2006)

    Google Scholar 

  25. Hairer, E., Lubich, Ch., Wang, B.: A filtered Boris algorithm for charged-particle dynamics in a strong magnetic field. Numer. Math. 144, 787–809 (2020)

    Article  MathSciNet  Google Scholar 

  26. He, Y., Sun, Y., Liu, J., Qin, H.: Volume-preserving algorithms for charged particle dynamics. J. Comput. Phys. 281, 135–147 (2015)

    Article  MathSciNet  Google Scholar 

  27. He, Y., Zhou, Z., Sun, Y., Liu, J., Qin, H.: Explicit K-symplectic algorithms for charged particle dynamics. Phys. Lett. A 381, 568–573 (2017)

    Article  MathSciNet  Google Scholar 

  28. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  Google Scholar 

  29. Hochbruck, M., Ostermann, A.: Explicit exponential Runge-Kutta methods for semilineal parabolic problems. SIAM J. Numer. Anal. 43, 1069–1090 (2005)

    Article  MathSciNet  Google Scholar 

  30. Knapp, L., Kendl, A., Koskela, A., Ostermann, A.: Splitting methods for time integration of trajectories in combined electric and magnetic fields. Phys. Rev. E 92, 063310 (2015)

    Article  MathSciNet  Google Scholar 

  31. Li, T., Wang, B.: Geometric continuous-stage exponential energy-preserving integrators for charged-particle dynamics in a magnetic field from normal to strong regimes. Appl. Numer. Math. 181, 1–22 (2022)

    Article  MathSciNet  Google Scholar 

  32. Mei, L., Wu, X.: Symplectic exponential Runge-Kutta methods for solving nonlinear Hamiltonian systems. J. Comput. Phys. 338, 567–584 (2017)

    Article  MathSciNet  Google Scholar 

  33. Miyatake, Y., Butcher, J.C.: Characterization of energy-preserving methods and the construction of parallel integrators for Hamiltonian systems. SIAM J. Numer. Anal. 54, 1993–2013 (2016)

    Article  MathSciNet  Google Scholar 

  34. Northrop, T.G.: The adiabatic motion of charged particles. In: Interscience Tracts on Physics and Astronomy, Vol. 21, Interscience Publishers, John Wiley and Sons, New York, London, Sydney, (1963)

  35. Possanner, S.: Gyrokinetics from variational averaging: existence and error bounds. J. Math. Phys. 59, 082702 (2018)

    Article  MathSciNet  Google Scholar 

  36. Qin, H., Zhang, S., Xiao, J., Liu, J., Sun, Y., Tang, W.: Why is Boris algorithm so good? Phys. Plasmas 20, 084503 (2013)

    Article  Google Scholar 

  37. Ricketson, L.F., Chacón, L.: An energy-conserving and asymptotic-preserving charged-particle orbit implicit time integrator for arbitrary electromagnetic fields. J. Comput. Phys. 418, 109639 (2020)

    Article  MathSciNet  Google Scholar 

  38. Sanz-Serna, J.M.: Rutta-Kutta schemes for Hamiltonian systems. BIT 28, 877–883 (1988)

    Article  MathSciNet  Google Scholar 

  39. Sanz-Serna, J.M., Abia, L.: Order conditions for canonical Runge-Kutta schemes. SIAM J. Numer. Anal. 28, 1081–1096 (1991)

    Article  MathSciNet  Google Scholar 

  40. Shi, Y., Sun, Y., Wang, Y., Liu, J.: Study of adaptive symplectic methods for simulating charged particle dynamics. J. Comput. Dyna. 6, 429–448 (2019)

    Article  MathSciNet  Google Scholar 

  41. Suris, Y.B.: The canonicity of mapping generated by Runge-Kutta type methods when integrating the systems \(\ddot{x}=-\frac{\partial U}{\partial x}\). Zh. Vychisl. Mat. Mat. Fiz. 29, 202-211 (1989)(in Russian); same as USSR Comput. Math. Phys. 29, 138-144 (1989)

  42. Tang, W., Zhang, J.: Symplecticity-preserving continuous-stage Runge-Kutta-Nyström methods. Appl. Math. Comput. 323, 204–219 (2018)

    MathSciNet  Google Scholar 

  43. Tao, M.: Explicit high-order symplectic integrators for charged particles in general electromagnetic fields. J. Comput. Phys. 327, 245–251 (2016)

    Article  MathSciNet  Google Scholar 

  44. Wang, B., Iserles, A., Wu, X.: Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. 16, 151–181 (2016)

    Article  MathSciNet  Google Scholar 

  45. Wang, B., Wu, X., Fang, Y.: A two-step symmetric method for charged-particle dynamics in a normal or strong magnetic field. Calcolo 57, 29 (2020)

    Article  MathSciNet  Google Scholar 

  46. Wang, B., Zhao, X.: Error estimates of some splitting schemes for charged-particle dynamics under strong magnetic field. SIAM J. Numer. Anal. 59, 2075–2105 (2021)

    Article  MathSciNet  Google Scholar 

  47. Wang, B., Zhao, X.: Geometric two-scale integrators for highly oscillatory system: uniform accuracy and near conservations. SIAM J. Numer. Anal. 61, 1246–1277 (2023)

    Article  MathSciNet  Google Scholar 

  48. Webb, S.D.: Symplectic integration of magnetic systems. J. Comput. Phys. 270, 570–576 (2014)

    Article  MathSciNet  Google Scholar 

  49. Xiao, J., Qin, H.: Explicit high-order gauge-independent symplectic algorithms for relativistic charged particle dynamics. Comput. Phys. Commun. 241, 19–27 (2009)

    Article  MathSciNet  Google Scholar 

  50. Xiao, J., Qin, H.: Slow manifolds of classical Pauli particle enable structure-preserving geometric algorithms for guiding center dynamics. Comput. Phys. Commun. 265, 107981 (2021)

    Article  MathSciNet  Google Scholar 

  51. Zhang, R., Qin, H., Tang, Y., Liu, J., He, Y., Xiao, J.: Explicit symplectic algorithms based on generating functions for charged particle dynamics. Phys. Revi. E 94, 013205 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the two anonymous reviewers for the very valuable comments and helpful suggestions. This work was supported by NSFC (12371403) and Fundamental Research Funds for the Central Universities (xzy022022014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by: Aihui Zhou

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Firstly, consider a Taylor expansion of the function \( \vartheta (\nu )\) at the origin with real coefficients \(c_{n}\), and formulate \(\vartheta (iy)\) as the following form

$$\begin{aligned} \vartheta (iy)=\vartheta (0)+iy\vartheta _{1}(y)-y^{2}\vartheta _{2}(y),\end{aligned}$$
(1.1)

where \(\vartheta _{1}(y)=\sum \limits _{j \ge 0} c_{2j+1}(-y^2)^{j}\) and \(\vartheta _{2}(y)=\sum \limits _{j \ge 0} c_{2j+2}(-y^2)^{j}\).

Then for a vector \(B=\big (B_1,B_2,B_3\big )^{\intercal }\) and a skew symmetric matrix \(M=\frac{1}{\epsilon }\left( \begin{array}{ccc} 0 &{} B_3 &{} -B_2 \\ -B_3 &{} 0 &{} B_1 \\ B_2 &{} -B_1 &{} 0 \\ \end{array} \right) \), it can be checked that \(M^3=-m^2 M\) with \(m= \frac{\Vert B\Vert }{\epsilon }\). Based on (5.1), one obtains that

$$\vartheta (M)=\vartheta (0) I+\vartheta _{1}(m) M+\vartheta _{2}(m) M^2,$$

which leads to the calculation of \(\vartheta (M) v\) by estimating the scalars \(\vartheta (0)\), \(\vartheta _{1}(m)\), \(\vartheta _{2}(m)\), and by forming twice a product of M with a vector.

Finally, we present the computation of \(\varphi _{0}\) and \( \varphi _{1}\) via the above results. Before going further, it is noted that \(\vartheta _{1}(y)=0\) if \( \vartheta (\nu )\) has only even powers of \(\nu \) and \(\vartheta (0)=0,\ \vartheta _{2}(y)=0\) if there are only odd powers of \(\nu \). Now we are in a position to get

$$\begin{aligned} \begin{aligned}&\varphi _{0}(hM)=I+\frac{sin(hm)}{m}M+\frac{1-cos(hm)}{m^2}M^2,\\&\varphi _{1}(hM)=I+\frac{1-cos(hm)}{hm^2}M+\frac{1-sinc(hm)}{m^2}M^2. \end{aligned} \end{aligned}$$

The expressions of the coefficients \(\alpha _{\tau \sigma }(hM)\), \(\beta _{\tau }( hM )\) and \(\gamma _{\tau }( hM )\) can be derived similarly. Moreover, from the above analysis, it follows that \(\bar{\varphi }(W)=\varphi (\bar{W}),\) where \(W=h\tilde{\Lambda }\textrm{i}\) with \(\tilde{\Lambda }=diag (-m,0,m)\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Wang, B. Continuous-stage adapted exponential methods for charged-particle dynamics with arbitrary magnetic fields. Adv Comput Math 49, 89 (2023). https://doi.org/10.1007/s10444-023-10093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10093-5

Keywords

Mathematics Subject Classification (2010)

Navigation