Skip to main content
Log in

The relationship between airborne pollen concentration and wind-related parameters in the atmosphere of İzmir, Turkey

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Pollen concentration in the atmosphere is strongly affected by changes in meteorological factors, as well as urban and suburban vegetation in the study area. The identification of atmospheric pollen sources and estimates on their concentrations are critical for the quality of life for individuals affected by pollen allergy. In this study, we evaluated the effect of wind on the concentration levels of dominant pollen types (Cupressaceae/Taxaceae, Olea europaea, Pinaceae, Poaceae, Quercus spp., and Urticaceae) recorded in the atmosphere of İzmir, Turkey’s 3rd largest city, in accordance with land cover over a 3-year period. Our results showed higher pollen concentrations for all taxa on days when wind direction was from the southeast toward the city. Elevations around the city, where arboreal taxa are widely distributed, particularly contributed to pollen concentrations through winds blowing from their directions. Besides these environmental elements, plants used in urban landscaping, such as Pinaceae, Olea europaea, and Cupressaceae/Taxaceae also contributed to pollen concentrations in the city’s atmosphere. Although we observed no significant transport from the northern part of the city, we have determined that the agricultural lands in the western and southern parts contribute to the pollen concentrations of Poaceae and Olea europaea. Additionally, we recorded the highest pollen transport for all taxa when wind speed was within the range of 1.6–3.3 m/s, while pollen concentrations declined in higher wind speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Andersen, T. B. (1991). A model to predict the beginning of the pollen season. Grana, 30(1), 269–275. https://doi.org/10.1080/00173139109427810

    Article  Google Scholar 

  • Belmonte, J., Roure, J. M., & March, X. (1998). Aerobiology of Vigo, Northwestern Spain: Atmospheric pollen spectrum and annual dynamics of the most important taxa, and their clinical importance for allergy. Aerobiologia, 14, 155–163. https://doi.org/10.1007/BF02694200

    Article  Google Scholar 

  • Bıçakçı, A., Çelenk, S., Altunoğlu, M. K., Bilişik, A., Canıtez, Y., Malyer, H., & Sapan, N. (2009). Allergenic airborne Gramineae (Grass) pollen concentrations in Turkey. Asthma Allergy Immunology, 7(2), 90–99.

    Google Scholar 

  • Celenk, S., Bıçakçı, A., Tamay, Z., Güler, N., Altunoğlu, M. K., Canıtez, Y., Malyer, H., Sapan, N., & Ones, U. (2010). Airborne Pollen in European and Asian Parts of Istanbul. Environmental Monitoring and Assessment, 164(1–4), 391–402.

    Article  CAS  Google Scholar 

  • Çeter, T., Pinar, N. M., Güney, K., Yildiz, A., Aşçı, B., & Smith, M. (2012). A 2-year aeropalynological survey of allergenic pollen in the atmosphere of Kastamonu, Turkey. Aerobiologia, 28(3), 355–366. https://doi.org/10.1007/s10453-011-9240-0

    Article  Google Scholar 

  • Charpin, D., Pichot, C., Belmonte, J., Sutra, J.-P., Zidkova, J., Chanez, P., Shahali, Y., Sénéchal, H., & Poncet, P. (2019). Cypress pollinosis: From tree to clinic. Clinical Reviews in Allergy & Immunology, 56(2), 174–195. https://doi.org/10.1007/s12016-017-8602-y

    Article  CAS  Google Scholar 

  • Ciani, F., Marchi, G., Dell’Olmo, L., Foggi, B., & Lipp, M. M. (2020). Contribution of land cover and wind to the airborne pollen recorded in a South European urban area. Aerobiologia, 36(3), 325–340. https://doi.org/10.1007/s10453-020-09634-y

    Article  Google Scholar 

  • Copernicus (Copernicus Global Land Service). (2019). Global Land Cover. 2019. Available online: https://lcviewer.vito.be/2019

  • D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., Liccardi, G., Popov, T., & Cauwenberge, P. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62(9), 976–990. https://doi.org/10.1111/j.1398-9995.2007.01393.x

    Article  CAS  Google Scholar 

  • Damialis, A., Gioulekas, D., Lazopoulou, C., Balafoutis, C., & Vokou, D. (2005). Transport of airborne pollen into the city of Thessaloniki: The effects of wind direction, speed and persistence. International Journal of Biometeorology, 49, 139–145. https://doi.org/10.1007/s00484-004-0229-z

    Article  Google Scholar 

  • Frenz, D. A. (2001). Interpreting atmospheric pollen counts for use in clinical allergy: Allergic symptomology. Annals of Allergy Asthma & Immunology, 86(2), 150–157. https://doi.org/10.1016/S1081-1206(10)62683-X

    Article  CAS  Google Scholar 

  • Galán, C., Cariñanos, P., Alcázar, P., & Dominguez-Vilches, E. (2007). Spanish aerobiology network (REA): Management and quality manual. Servicio de Publicaciones Universidad de Córdoba.

    Google Scholar 

  • Galán, C., García-Mozo, H., Vázquez, L., Ruiz, L., Díaz de la Guardia, C., & Trigo, M. M. (2005). Heat requirement for the onset of the Olea europaea L pollen season in several sites in Andalusia and the effect of the expected future climate change. International Journal of Biometeorology, 49(3), 184–188. https://doi.org/10.1007/s00484-004-0223-5

    Article  Google Scholar 

  • Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., Berger, U., Clot, B., & Brandao, R. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia, 30(4), 385–395. https://doi.org/10.1007/s10453-014-9335-5

    Article  Google Scholar 

  • Garcia-Mozo, H., Dominguez-Vilches, E., & Galan, C. (2007). Airborne allergenic pollen in natural areas: Hornachuelos Natural Park, Cordoba, Southern Spain. Annals of Agricultural and Environmental Medicine, 14(1), 63–69.

    Google Scholar 

  • García-Mozo, H., Hernández-Ceballos, M. A., Trigo, M. M., & Galán, C. (2017). Wind dynamics’ influence on south Spain airborne olive-pollen during African intrusions. Science of the Total Environment, 609, 1340–1348. https://doi.org/10.1016/j.scitotenv.2017.08.005

    Article  CAS  Google Scholar 

  • Guvensen, A., & Ozturk, M. (2003). Airborne pollen calendar of Izmir—Turkey. Annals of Agricultural and Environmental Medicine, 10(1), 37–44.

    Google Scholar 

  • Hoebeke, L., Bruffaerts, N., Verstraeten, C., Delcloo, A., De Smedt, T., Packeu, A., Detandt, M., & Hendrickx, M. (2018). Thirty-four years of pollen monitoring: An evaluation of the temporal variation of pollen seasons in Belgium. Aerobiologia, 34(2), 139–155. https://doi.org/10.1007/s10453-017-9503-5

    Article  Google Scholar 

  • Hoffmann, T. M., AcarSahin, A., Aggelidis, X., et al. (2020). “Whole” versus “Fragmented” approach to EAACI Pollen Season Definitions: a multicenter study in six Southern European Cities. Allergy, 75(7), 1659–1671. https://doi.org/10.1111/all.14153

    Article  Google Scholar 

  • Jato, V., Rodrı´guez-Rajo, F. J., Seijo, M. C., & Aira, M. J. (2009). Poaceae pollen in Galicia (NW Spain): Characterization and recent trends in atmospheric pollen season. International Journal of Biometeorology, 53(4), 333–344. https://doi.org/10.1007/s00484-009-0220-9

    Article  CAS  Google Scholar 

  • Jato, V., Rodríguez-Rajo, F., Fernandez-González, M., & Aira, M. (2015). Assessment of Quercus flowering trends in NW Spain. International Journal of Biometeorology, 59(5), 517–531. https://doi.org/10.1007/s00484-014-0865-x

    Article  CAS  Google Scholar 

  • Maya-Manzano, J. M., Fernandez-Rodríguez, S., Smith, M., Tormo-Molina, R., Reynolds, A. M., Silva-Palacios, I., Gonzalo-Garijo, A., & Sadys, M. (2016). Airborne Quercus pollen in SW Spain: Identifying favorable conditions for atmospheric transport and potential source areas. Science of the Total Environment, 571, 1037–1047. https://doi.org/10.1016/j.scitotenv.2016.07.094

    Article  CAS  Google Scholar 

  • Maya-Manzano, J. M., Sadyś, M., Tormo-Molina, R., Fernández-Rodríguez, S., Oteros, J., Silva-Palacios, I., & Gonzalo-Garijo, A. (2017). Relationships between airborne pollen grains, wind direction and land cover using GIS and circular statistics. Science of the Total Environment, 584–585, 603–613. https://doi.org/10.1016/j.scitotenv.2017.01.085

    Article  CAS  Google Scholar 

  • Palacios, I. S., Molina, R. T., & Rodríguez, A. F. M. (2007). The importance of interactions between meteorological conditions when interpreting their effect on the dispersal of pollen from homogeneously distributed sources. Aerobiologia, 23(1), 17–26. https://doi.org/10.1007/s10453-006-9041-z

    Article  Google Scholar 

  • Papa, G., Romano, A., Quaratino, D., Di Fonso, M., Viola, M., Artesani, M. C., et al. (2001). Prevalence of sensitization to Cupressus sempervirens: A 4 year retrospective study. The Science of the Total Enviroment, 270, 83–87.

    Article  CAS  Google Scholar 

  • Rahman, A., Luo, C., Khan, M. H. R., Ke, J., Thilakanayaka, V., & Kumar, S. (2019). Influence of atmospheric PM2.5, PM10, O3, CO, NO2, SO2 and meteorological factors on the concentration of airborne pollen in Guangzhou, China. Atmospheric Environment, 212, 290–304. https://doi.org/10.1016/j.atmosenv.2019.05.049

    Article  CAS  Google Scholar 

  • Ribeiro, H., Oliveira, M., & Abreu, I. (2008). Intradiurnal Variation of Allergenic Pollen in the City of Porto (Portugal). Aerobiologia, 24(3), 173–177. https://doi.org/10.1007/s10453-008-9091-5

    Article  Google Scholar 

  • Rodriguez-Rajo, F. J., Jato, V., & Aira, M. J. (2003). Pollen content in the atmosphere of Lugo (NW Spain) with reference to meteorological factors (1999–2001). Aerobiologia, 19, 213–225. https://doi.org/10.1023/B:AERO.0000006527.12928.26

    Article  Google Scholar 

  • Rojo, J., Rapp, A., Lara, B., Fernández-González, F., & Pérez-Badia, R. (2015). Effect of land uses and wind direction on the contribution of local sources to airborne pollen. Science of the Total Environment, 538, 672–682. https://doi.org/10.1016/j.scitotenv.2015.08.074

    Article  CAS  Google Scholar 

  • Ruiz-Valenzuela, L., & Aguilera, F. (2018). Trends in airborne pollen and pollen-season-related features of Anemophilous species in Jaen (south Spain): A 23-year perspective. Atmospheric Environment, 180, 234–243. https://doi.org/10.1016/j.atmosenv.2018.03.012

    Article  CAS  Google Scholar 

  • Sabariego, S., Cuesta, P., Ferna´ndez-Gonza´lez, F., & Pe´rezBadia, R. (2012). Models for forecasting airborne Cupressaceae pollen levels in central Spain. International Journal of Biometeorology, 56, 253–258. https://doi.org/10.1007/s00484-011-0423-8

    Article  Google Scholar 

  • Skjøth, C. A., Sommer, J., Stach, A., Smith, M., & Brandt, J. (2007). The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clinical & Experimental Allergy, 37(8), 1204–1212. https://doi.org/10.1111/j.1365-2222.2007.02771.x

    Article  Google Scholar 

  • Sofiev, M., Belmonte, J., Gehrig, R., Izquierdo, R., Smith, M., Dahl, A., & Siljamo, P. (2013). Airborne pollen transport. In M. Sofiev & K. C. Bergmann (Eds.), Allergenic pollen: A Review of the Production Release, Distribution and Health Impacts (pp. 127–160). Springer.

    Chapter  Google Scholar 

  • Szczepanek, K., Myszkowska, D., Worobiec, E., Piotrowicz, K., Ziemianin, M., & Bielec-Bakowska, Z. (2017). The longrange transport of Pinaceae pollen: An example in Krako´w (southern Poland). Aerobiologia, 33(1), 109–125. https://doi.org/10.1007/s10453-016-9454-2

    Article  Google Scholar 

  • Tasioulis, T., Karatzas, K., Charalampopoulos, A., Damialis, A., & Vokou, D. (2022). Five ways to define a pollen season: Exploring congruence and disparity in its attributes and their long-term trends. Aerobiologia, 38(1), 71–83. https://doi.org/10.1007/s10453-021-09735-2

    Article  Google Scholar 

  • Tosunoglu, A., Ilcim, A., Malyer, H., & Bicakci, A. (2018). Aeropalynological spectrum of Hatay, Turkey, the eastern coast of the Mediterranean Sea. Aerobiologia, 34(4), 557–572. https://doi.org/10.1007/s10453-018-9531-9

    Article  Google Scholar 

  • Uguz, U., Guvensen, A., & Sengonca Tort, N. (2017). Annual and intradiurnal variation of dominant airborne pollen and the effects of meteorological factors in Çeşme (Izmir, Turkey). Environmental Monitoring and Assessment, 189(10), 530. https://doi.org/10.1007/s10661-017-6238-2

    Article  CAS  Google Scholar 

  • Ziello, C., Sparks, T. H., Estrella, N., Belmonte, J., Bergmann, K. C., Bucher, E., et al. (2012). Changes to airborne pollen counts across Europe. PLoS ONE, 7(4), e34076. https://doi.org/10.1371/journal.pone.0034076

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sincere thanks to İzmir Meteorology 2nd District Directorate for their technical support. Also thank Aykut Güvensen for proof-reading the text.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

This article was written by UU as a single author. Data collection, material preparation, and analysis were also performed by UU.

Corresponding author

Correspondence to Ulas Uguz.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uguz, U. The relationship between airborne pollen concentration and wind-related parameters in the atmosphere of İzmir, Turkey. Aerobiologia 39, 441–455 (2023). https://doi.org/10.1007/s10453-023-09802-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-023-09802-w

Keywords

Navigation