Skip to main content
Log in

Continuity Properties of Pullback and Pullback Exponential Attractors for Non-autonomous Plate with \(p-\)Laplacian

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

Our purpose is to study some continuity properties of pullback and pullback exponential attractors for the non-autonomous plate with \(p-\)Laplacian and nonlocal weak damping \(\text {g}_\epsilon (\Vert u_t\Vert )u_t\) under hinged boundary condition. Moreover, the existence of pullback attractors in the natural space energy with finite dimensionality is proved together with its upper semicontinuity and continuity with respect to the perturbed parameter \(\epsilon \in [0, 1]\). Finally, we prove that the related process has a pullback exponential attractor \({\mathscr {M}}^\epsilon _{exp}\) and is Hölder continuous on \(\epsilon \in [0, 1]\). In particular, the continuity on perturbation \(\epsilon \in [0,1]\) holds for global and exponential attractors when the non-autonomous dynamical system degenerates to an autonomous one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Second edition. Pure and Applied Mathematics (Amsterdam) 140 Elsevier/Academic Press, Amsterdam (2003)

  2. Aouadi, M., Guerine, S.: Pullback attractors and upper semicontinuity for non-autonomous extensible two-beams. Discrete Contin. Dyn. Syst. Ser. B 28, 3599–3628 (2023)

    MathSciNet  Google Scholar 

  3. Aouadi, M.: Regularity and upper semicontinuity of pullback attractors for non-autonomous Rao-Nakra beam. Nonlinearity 35, 1773–1809 (2022)

    MathSciNet  Google Scholar 

  4. Aouadi, M.: Continuity of global attractors for a suspension bridge equation. Acta Appl. Math. 176, 1 (2021)

    MathSciNet  Google Scholar 

  5. Aouadi, M.: Micro-inertia effects on existence of attractors for Form II Mindlin’s strain gradient viscoelastic plate. Nonlinear Differ. Equ. Appl. 28, 28–52 (2021)

    MathSciNet  Google Scholar 

  6. Caraballo, T., Łukaszewicz, G., Reala, J.: Pullback attractors for asymptotically compact nonautonomous dynamical systems. Nonlinear Anal. 64, 484–98 (2006)

    MathSciNet  Google Scholar 

  7. Caraballo, T., Carvalho, A.N., Langa, J.A., Rivero, F.: Existence of pullback attractors for pullback asymptotically compact processes. Nonlinear Anal. 72, 1967–1976 (2010)

    MathSciNet  Google Scholar 

  8. Chueshov, I.: Dynamics of Quasi-Stable Dissipative Systems. Springer, New York (2015)

    Google Scholar 

  9. Chueshov, I., Lasiecka, I.: Global attractors for Mindlin-Timoshenko plates and for their Kirchhoff limits. Milan J. Math. 74, 117–138 (2006)

    MathSciNet  Google Scholar 

  10. Czaja, R., Efendiev, M.: Pullback exponential attractors for nonautonomous equations Part I: semilinear parabolic problems. J. Math. Anal. Appl. 381, 748–765 (2011)

    MathSciNet  Google Scholar 

  11. Chueshov, I., Eller, M., Lasiecka, I.: On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Commun. Partial Differ. Equ. 27, 1901–51 (2002)

    MathSciNet  Google Scholar 

  12. Efendiev, M.M., Miranville, A., Zelik, S.: Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems. Proc. R. Soc. Edinb. 135A, 703–730 (2005)

    Google Scholar 

  13. Fatori, L.H., Jorge Silva, M.A., Ma, T.F., Yang, Z.: Long-time behavior of a class of thermoelastic plates with nonlinear strain. J. Diff. Equ. 259, 4831–4862 (2015)

    MathSciNet  Google Scholar 

  14. Feng, B., Jorge Silva, M.A., Caixeta, A.H.: Long-time behavior for a class of semi-linear viscoelastic Kirchhoff beams/plates. Appl. Math. Optim. 82, 657–686 (2020)

    MathSciNet  Google Scholar 

  15. Freitas, M.M.: Pullback attractors for non-autonomous porous elastic system with nonlinear damping and sources terms. Math. Methods Appl. Sci. 43, 658–81 (2020)

    MathSciNet  Google Scholar 

  16. Freitas, M.M., Costa, A.A.C., Araújo, G.M.: Pullback dynamics of a non-autonomous mixture problem in one dimensional solids with nonlinear damping. Commun. Pure Appl. Anal. 19, 785–809 (2020)

    MathSciNet  Google Scholar 

  17. Hoang, L.T., Olson, E.J., Robinson, J.C.: On the continuity of global attractors. Proc. Am. Math. Sci. 143, 4389–4395 (2015)

    MathSciNet  Google Scholar 

  18. Hoang, L.T., Olson, E.J., Robinson, J.C.: Continuity of pullback and uniform attractors. J. Differ. Equ. 264, 4067–4093 (2018)

    MathSciNet  Google Scholar 

  19. Jorge Silva, M.A., Ma, T.F.: On a viscoelastic plate equation with history setting and pertubation of \(p-\)Laplacian type. IMA J. Appl. Math. 78, 1130–1146 (2013)

    MathSciNet  Google Scholar 

  20. Khanmamedov, A.: Existence of a global attractor for the parabolic equation with nonlinear Laplacian principal part in an unbounded domain. J. Math. Anal. Appl. 316, 601–615 (2006)

    MathSciNet  Google Scholar 

  21. Lagnese, J.E.: Boundary Stabilization of Thin Plates. SIAM Studies in Applied Mathematics, vol. 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1989)

    Google Scholar 

  22. Lagnese, J., Lions, J.L.: Modelling, Analysis and Control of Thin Plates. In: Recherches en Mathématiques Appliquées. Vol. 6 Masson Paris (1988)

  23. Langa, J.A., Miranville, A., Real, J.: Pullback exponential attractors. Discrete Contin. Dyn. Syst. Ser. B 26, 1329–1357 (2010)

    MathSciNet  Google Scholar 

  24. Lange, H., Perla Menzala, G.: Rates of decay of a nonlocal beam equation. Differ. Integral Equ. 10, 1075–1092 (1997)

    MathSciNet  Google Scholar 

  25. Liu, L., Fu, X.: Existence and upper semi-continuity of pullback attractors of a \(p-\)Laplacian equation with delay. J. Math. Phys. 58, 082702 (2017)

    MathSciNet  Google Scholar 

  26. Li, D., Kloeden, P.E.: Equi-attraction and the continuous dependence of attractors on parameters. Glasg. Math. J. 46, 131–141 (2004)

    MathSciNet  Google Scholar 

  27. Li, D., Kloeden, P.E.: Equi-attraction and the continuous dependence of pullback attractors on paramaters. Stoch. Dyn. 4, 373–384 (2004)

    MathSciNet  Google Scholar 

  28. Li, Y.J., Wang, S.Y., Wu, H.Q.: Pullback attractors for non-autonomous reaction-diffusion equations in \(L^p\). Appl. Math. Comput. 207, 373–379 (2009)

    MathSciNet  Google Scholar 

  29. Li, Y., Yang, Z., Da, F.: Robust attractors for a perturbed non-autonomous extensible beam equation with nonlinear nonlocal damping. Contin. Dyn. Syst. Ser. B 39, 5975–6000 (2019)

    MathSciNet  Google Scholar 

  30. Li, Y., Yang, Z.: Robustness of attractors for non-autonomous Kirchhoff wave models with strong nonlinear damping. Appl. Math. Optim. 84, 245–272 (2021)

    MathSciNet  Google Scholar 

  31. Lions, J.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969)

    Google Scholar 

  32. Marín-Rubio, P., Real, J.: Pullback attractors for 2d-Navier-Stokes equations with delays in continuous and sub-linear operators. Contin. Dyn. Syst. Ser. B 26, 989–1006 (2010)

    MathSciNet  Google Scholar 

  33. Mazon, J., Rossi, J., Toledo, J.: An optimal matching problem for the Euclidean distance. SIAM J. Math. Anal. 46, 233–255 (2014)

    MathSciNet  Google Scholar 

  34. Simsen, J., Nascimento, M., Simsen, M.: Existence and upper semicontinuity of pullback attractors for non-autonomous \(p-\)Laplacian parabolic problems. J. Math. Anal. Appl. 413, 685–699 (2014)

    MathSciNet  Google Scholar 

  35. Wang, Y.: On the upper semicontinuity of pullback attractors with applications to plate equations. Commun. Pure Appl. Anal. 9, 1653–73 (2007)

    MathSciNet  Google Scholar 

  36. Wang, Y.H.: Pullback attractors for nonautonomous wave equations with critical exponent. Nonlinear Anal. TMA 68, 365–376 (2008)

    MathSciNet  Google Scholar 

  37. Wang, Y.H., Zhong, C.K.: Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models. Contin. Dyn. Syst. Ser. B 33, 3189–3209 (2013)

    MathSciNet  Google Scholar 

  38. Yang, X.G., Nascimento, M.J.D., Pelicer, M.L.: Uniform attractors for non-autonomous plate equations with \(p-\)Laplacian perturbation and critical nonlinearities. Contin. Dyn. Syst. Ser. B 40, 1937–1961 (2020)

    MathSciNet  Google Scholar 

  39. Yang, L., Yang, M.H., Kloeden, P.E.: Pullback attractors for non-autonomous quasilinear parabolic equations with a dynamical boundary condition. Contin. Dyn. Syst. Ser. B 17, 2635–2651 (2012)

    MathSciNet  Google Scholar 

  40. Yang, Z., Li, Y.: Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous Kirchhoff wave models. Contin. Dyn. Syst. Ser. B 38, 2629–2653 (2018)

    MathSciNet  Google Scholar 

  41. Yang, Z., Li, Y.: Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Contin. Dyn. Syst. Ser. B 24, 4899–4912 (2019)

    MathSciNet  Google Scholar 

  42. Zhao, C.X., Ma, S., Zhong, C.K.: Long-time behavior for a class of extensible beams with nonlocal weak damping and critical nonlinearity. J. Math. Phys. 61, 032701 (2020)

    MathSciNet  Google Scholar 

  43. Zhao, C., Zhao, C., Zhong, C.: The global attractor for a class of extensible beams with nonlocal weak damping. Discrete Contin. Dyn. Syst. Ser. B 25, 935–955 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Editor in Chief Prof. Irena Lasiecka and the anonymous referees for their critical reviews and valuable comments which thoroughly improved the paper.

Funding

The author has not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moncef Aouadi.

Ethics declarations

Competing interests

The author has disclosed no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouadi, M. Continuity Properties of Pullback and Pullback Exponential Attractors for Non-autonomous Plate with \(p-\)Laplacian. Appl Math Optim 89, 10 (2024). https://doi.org/10.1007/s00245-023-10082-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-10082-6

Keywords

Mathematics Subject Classification

Navigation