Skip to main content
Log in

Phase Relations of the Nd2O3-CaO-Fe2O3 System at 1473 K in Air

  • Original Research Article
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

A Correction to this article was published on 20 December 2023

This article has been updated

Abstract

The equilibrium phase relations of the Nd2O3-CaO-Fe2O3 system were investigated at 1473 K in air using a high-temperature isothermal equilibration technique followed by quenching. Using x-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) analysis of quenched samples, twelve two-phase equilibria regions and eleven three-phase equilibria regions were observed. A series of solid solutions Nd1−xCaxFeO3−δ formed in the ranges of 0 ≤ x ≤ 0.2, 0.5 ≤ x ≤ 0.6, and 0.6 < x ≤ 1 were found. Ternary compound Ca1−xNd1+xFeO4−δ was observed to be stable at 1473 K with limited substitution of Nd by Ca. The 1473 K isothermal section was constructed for the Nd2O3-CaO-Fe2O3 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Change history

References

  1. S. Imashuku and K. Wagatsuma, Cathodoluminescence Analysis of Nonmetallic Inclusions in Steel Deoxidized and Desulfurized by Rare-Earth Metals (La, Ce, Nd), Metall. Trans. B, 2020, 51, p 79-84.

    Article  Google Scholar 

  2. H. Qiyong, Physicochemical Characteristics of Rare Earth Elements in Ironmaking and Steelmaking, J. Less-Common Met., 1986, 126, p 73-82.

    Article  Google Scholar 

  3. P.E. Waudby, Rare Earth Additions to Steel, Int. Met. Rev., 1978, 23, p 74-98.

    Article  Google Scholar 

  4. W.G. Wilson, D.A.R. Kay, and A. Vahed, The Use of Thermodynamics and Phase Equilibria to Predict the Behavior of the Rare Earth Elements in Steel, JOM, 1974, 26, p 14-23.

    Article  ADS  Google Scholar 

  5. D. Luo, Y. Yu, Z. Zhang, L. Sun, X. Feng, and C. Lai, Development of High Impact Toughness Offshore Engineering Steel by Yttrium-Based Rare Earth Addition, Ironmak. Steelmak., 2021, 48, p 1247-1253.

    Article  Google Scholar 

  6. F. Pan, J. Zhang, H.L. Chen, Y.H. Su, C.L. Kuo, Y.H. Su et al., Effects of Rare Earth Metals on Steel Microstructures, Materials, 2016, 9, p 417.

    Article  ADS  Google Scholar 

  7. C.M. Jantzen and F.P. Glasser, Solid-State Reactions in the System CaO-Nd2O3-Fe2O3-Al2O3, Mater. Res. Bull., 1979, 14, p 1601-1607.

    Article  Google Scholar 

  8. C.H. Yo, I.Y. Jung, K.H. Ryu, K.S. Ryu, and J.H. Choy, A Study of the Nonstoichiometry and Physical Properties of the Perovskite Nd1xCaxFeO3−y System, J. Solid State Chem., 1995, 114, p 265-270.

    Article  ADS  Google Scholar 

  9. J. Li, X. Kou, Y. Qin, and H. He, Structures and Magnetic Properties of Nd1xCaxFeO3 Nanoparticles, J. Appl. Phys., 2002, 92, p 7504-7509.

    Article  ADS  Google Scholar 

  10. J.M. Hudspeth, D.J. Goossens, A.J. Studer, R.L. Withers, and L. Norén, The Crystal and Magnetic Structures of LaCa2Fe3O8 and NdCa2Fe3O8, J. Phys.: Condens. Matter., 2009, 21, p 124206.

    ADS  Google Scholar 

  11. L. Lindenthal, T. Ruh, R. Rameshan, H. Summerer, A. Nenning, C. Herzig et al., Ca-Doped Rare Earth Perovskite Materials for Tailored Exsolution of Metal Nanoparticles, Acta Crystallogr., Sect. B: Struct. Sci Cryst. Eng. Mater., 2020, 76, p 1055-1070.

    Article  ADS  Google Scholar 

  12. A.S. Urusova, A.E. Vakhromeeva, T.V. Aksenova, A.V. Bryuzgina, and V.A. Cherepanov, Crystal Structute of Complex Oxides in the Nd2O3–MO–Fe2O3 (M= Ca, Sr) Systems, Inorg. Mater., 2020, 56, p 42-46.

    Article  Google Scholar 

  13. L.K. Jakobsson, G. Tranell, and I.H. Jung, Experimental Investigation and Thermodynamic Modeling of the B2O3-FeO-Fe2O3-Nd2O3 System for Recycling of NdFeB Magnet Scrap, Metall. Trans. B, 2017, 48, p 60-72.

    Article  Google Scholar 

  14. T. Katsura, K. Kitayama, T. Sugihara, and N. Kimizuka, Thermochemical Properties of Lanthanoid-Iron-Perovskite at High Temperatures, Bull. Chem. Soc. Jpn, 1975, 48, p 1809-1811.

    Article  Google Scholar 

  15. J.W. Nielsen and S.L. Blank, Crystal Growth and Phase Equilibrium Studies in the System (RE)2O3-Fe2O3, J. Cryst. Growth, 1972, 13, p 702-705.

    Article  ADS  Google Scholar 

  16. T. Katsura, T. Sekine, K. Kitayama, T. Sugihara, and N. Kimizuka, Thermodynamic Properties of Fe-Lathanoid-O Compounds at High Temperatures, J. Solid State Chem., 1978, 23, p 43-57.

    Article  ADS  Google Scholar 

  17. S.C. Parida, S. Dash, Z. Singh, R. Prasad, K.T. Jacob, and V. Venugopal, Thermodynamic Studies on NdFeO3 (s), J. Solid State Chem., 2002, 164, p 34-41.

    Article  ADS  Google Scholar 

  18. J. Shanker, M.B. Suresh, and D.S. Babu, Synthesis, Characterization and Electrical Properties of NdXO3 (X = Cr, Fe) Nanoparticles, Mater. Today Proc., 2016, 3, p 2091-2100.

    Article  Google Scholar 

  19. M. Nakhaei and D.S. Khoshnoud, Influence of Particle Size and Lattice Distortion on Magnetic and Dielectric Properties of NdFeO3 Orthoferrite, Phys. B, 2019, 553, p 53-58.

    Article  ADS  Google Scholar 

  20. J. Ramesh, N. Raju, S.S.K. Reddy, M.S. Reddy, C.H.G. Reddy, P.Y. Reddy et al., 57Fe Mössbauer Study of Spin Reorientation Transition in Polycrystalline NdFeO3, J. Alloy. Compd., 2017, 711, p 300-304.

    Article  Google Scholar 

  21. L. Guo, K. Huang, Y. Chen, G. Li, L. Yuan, W. Peng et al., Mild Hydrothermal Synthesis and Ferrimagnetism of Pr3Fe5O12 and Nd3Fe5O12 Garnets, J. Solid State Chem., 2011, 184, p 1048-1053.

    Article  ADS  Google Scholar 

  22. I.P. Roof, M.D. Smith, and H. Loye, Crystal Growth of a New Series of Non-Centrosymmetric Oxides, Ln3FeO6 (Ln = La, Nd, Sm, Eu and Gd), Solid State Sci., 2010, 12, p 1211-1214.

    Article  ADS  Google Scholar 

  23. T.H. Le, K. Tang, S. Arnout, A. Malfliet, B. Blanpain, and M. Guo, Thermodynamic Assessment of the Nd2O3-CaO-SiO2 Ternary System, Calphad, 2016, 55, p 157-164.

    Article  Google Scholar 

  24. W. Wong-Ng, W. Laws, K.R. Talley, Q. Huang, Y. Yan, J. Martin et al., Phase Equilibria and Crystal Chemistry of the CaO–1/2Nd2O3–CoOz System at 885 °C in air, J. Solid State Chem., 2014, 215, p 128-134.

    Article  ADS  Google Scholar 

  25. L.M. Lopato, Highly Refractory Oxide Systems Containing Oxides of Rare-Earth Elements, Ceramurgia Int., 1976, 2, p 18-32.

    Article  Google Scholar 

  26. T.V. Aksenova, A.S. Urusova, and V.A. Cherepanov, Phase Equilibria and Structure of Complex Oxides in the 1/2Nd2O3–CaO–CoO System in air at 1373 K, Russ. J. Phys. Chem. A, 2020, 94, p 2495-2501.

    Article  Google Scholar 

  27. T. Hidayat, D. Shishin, S.A. Decterov, and E. Jak, Thermodynamic Optimization of the Ca-Fe-O System, Metall. Trans. B, 2016, 47, p 256-281.

    Article  Google Scholar 

  28. V. Cascos, R. Martinez-Coronado, J.A. Alonso, and M.T. Fernández-Díaz, Structural and Electrical Characterization of the Co-Doped Ca2Fe2O5 Brownmillerite: Evaluation as SOFC-Cathode Materials, Int. J. Hydrogen Energy, 2015, 40, p 5456-5468.

    Article  Google Scholar 

  29. K. Gupta, S. Singh, and R.M.S. Rao, Fast, Reversible CO2 Capture in Nanostructured Brownmillerite CaFeO2.5, Nano Energy., 2015, 11, p 146-153.

    Article  Google Scholar 

  30. R.A. Candeia, M.I.B. Bernardi, E. Longo, I.M.G. Santos, and A.G. Souza, Synthesis and Characterization of Spinel Pigment CaFe2O4 Obtained by the Polymeric Precursor Method, Mater. Lett., 2004, 58, p 569-572.

    Article  Google Scholar 

  31. E.V. Tsipis, Y.V. Pivak, J.C. Waerenborgh, V.A. Kolotygin, A.P. Viskup, and V.V. Kharton, Oxygen Ionic Conductivity, Mössbauer Spectra and Thermal Expansion of CaFe2O4δ, Solid State Ionics, 2007, 178, p 1438-1436.

    Article  Google Scholar 

  32. L. Khanna and N.K. Verma, Biocompatibility and Superparamagnetism in Novel Silica/CaFe2O4 Nanocomposite, Mater. Lett., 2014, 128, p 376-379.

    Article  Google Scholar 

  33. B. Phillips and A. Muan, Phase Equilibria in the System CaO-Iron Oxide in Air and at 1 Atm. O2 Pressure, J. Am. Ceram. Soc., 1958, 41, p 445-454.

    Article  Google Scholar 

  34. J. Edström, The Phase CaO 2Fe2O3, in the System CaO-Fe2O3, and its Importance as Binder in Ore Pellets, Jernkont. Ann., 1956, 140, p 101-115.

    Google Scholar 

  35. P. Batti, Stability of the Compound CaO 2Fe2O3, Chim Ind (Milan, Italy), 1956, 38, p 864-866.

    Google Scholar 

  36. Liu XG, Experimental phase equilibria studies in oxide systems for copper smelting slags, Copper, 2013, p 108.

  37. M. Aspiala, T. Hidayat, P. Taskinen, and E. Jak, Determination of thermodynamic properties of Ca4Fe9O17 by solid state EMF method, J. Alloys Compd., 2016, 658, p 939-945.

    Article  Google Scholar 

  38. B. Malaman, H. Alebouyeh, F. Jeannot, A. Courtois, R. Gerardin, and O. Evrard, Preparation et caracterisation des ferrites de calcium CaFe2+nO4+n a valeurs fractionnaires de n (32, 52) et leur incidence sur le diagramme Fe-Ca-O A 1120 °C, Mater. Res. Bull., 1981, 16, p 1139-1148.

    Article  Google Scholar 

  39. S. Oyama, M. Wakeshima, Y. Hinatsu, and K. Ohoyama, Spin Reorientation Transition in Layered Perovskite CaNdFeO4, J. Phys.: Condens. Matter., 2004, 16, p 8429.

    ADS  Google Scholar 

  40. X.Q. Liu, X.J. Lü, X.M. Chen, and G.L. Lü, Structures and Electrical Conductivity of CaNdFeO4 Ceramics, J. Electroceram., 2008, 21, p 487-490.

    Article  Google Scholar 

  41. S.G. Roh, K.S. Roh, and C.H. Yo, The Nonstoichiometry and Physical Properties of the Nd1xCa1+xFeO4y System, J. Mater. Sci., 1996, 31, p 2641-2646.

    Article  ADS  Google Scholar 

  42. L.V. Khvostova, A.P. Galayda, A.V. Maklakova, A.S. Batenkova, A.A. Startseva, N.E. Volkova, and V.A. Cherepanov, Crystal Structure of Solid Solutions in the Sm2O3-CaO-MO and Ln2O3-SrO-MO Systems (Ln= Sm, Gd; M= Fe, Co), Inorg. Mater., 2019, 55, p 1001-1006.

    Article  Google Scholar 

  43. N.E. Volkova, A.P. Galayda, A.I. Dyagileva, L.Y. Gavrilova, and V.A. Cherepanov, Thermal Expansion and Conductivity of Sm0.9Ca1.1Fe1–yCoyO4–δ Solid Solutions, Russ. J. Phys. Chem. A, 2020, 94, p 2522-2526.

    Article  Google Scholar 

  44. A. Belsky, M. Hellenbrandt, V.L. Karen, and P. Luksch, New Developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in Support of Materials Research and Design, Acta Crystallogr. Sect. B Struct. Sci., 2002, 58, p 364-369.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanmin Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Li, S., Wang, H. et al. Phase Relations of the Nd2O3-CaO-Fe2O3 System at 1473 K in Air. J. Phase Equilib. Diffus. 44, 631–641 (2023). https://doi.org/10.1007/s11669-023-01069-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-023-01069-5

Keywords

Navigation