Skip to main content
Log in

Association between aortic thrombi detected using non-obstructive general angioscopy and atrial fibrillation

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Atrial fibrillation (AF) is an independent risk factor for stroke and systemic embolism. Cardiogenic and aortogenic emboli are causes of stroke or systemic embolism. Non-obstructive general angioscopy (NOGA) can be used to diagnose aortic intimal findings, including thrombi and atherosclerotic plaques, but little is known about NOGA-derived aortic intimal findings in patients with AF. This study focused on aortic intimal findings in patients with AF and evaluated the association between AF and aortic thrombi detected using NOGA. We enrolled 283 consecutive patients with coronary artery disease who underwent NOGA of the aorta between January 2017 and August 2022. Aortic intimal findings were screened using NOGA after coronary arteriography. The patients were divided into two groups according to their AF history (AF, n = 50 and non-AF, n = 233). Patients in the AF group were older than those in the non-AF group. Sex, body mass index, and coronary risk factors were not significantly different between the two groups. In the NOGA findings, the presence of intense yellow plaques and ruptured plaques was not significantly different between the two groups. Aortic thrombi were more frequent in the AF group than in the non-AF group (92.0 vs. 71.6%, p < 0.001). Multivariate logistic regression found that AF was independently associated with aortic thrombi (odds ratio 3.87 [95% CI 1.28–11.6], p = 0.016). The presence of aortic thrombi observed using NOGA was associated with AF in patients with coronary artery disease. The roles of aortic thrombi as well as cardiogenic embolism may require clarification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Okumura Y, Yokoyama K, Matsumoto N, Tachibana E, Kuronuma K, Oiwa K, Matsumoto M, Kojima T, Hanada S, Nomoto K, Arima K, Takahashi F, Kotani T, Ikeya Y, Fukushima S, Itoh S, Kondo K, Chiku M, Ohno Y, Onikura M, Hirayama A, The Sakura Af Registry I (2017) Current use of direct oral anticoagulants for atrial fibrillation in Japan: findings from the SAKURA AF registry. J Arrhythm 33:289–296. https://doi.org/10.1016/j.joa.2016.11.003

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bassand JP, Virdone S, Goldhaber SZ, Camm AJ, Fitzmaurice DA, Fox KAA, Goto S, Haas S, Hacke W, Kayani G, Mantovani LG, Misselwitz F, Pieper KS, Turpie AGG, van Eickels M, Verheugt FWA, Kakkar AK (2019) Early risks of death, stroke/systemic embolism, and major bleeding in patients with newly diagnosed atrial fibrillation. Circulation 139:787–798. https://doi.org/10.1161/CIRCULATIONAHA.118.035012

    Article  PubMed  Google Scholar 

  3. Gaita F, Corsinovi L, Anselmino M, Raimondo C, Pianelli M, Toso E, Bergamasco L, Boffano C, Valentini MC, Cesarani F, Scaglione M (2013) Prevalence of silent cerebral ischemia in paroxysmal and persistent atrial fibrillation and correlation with cognitive function. J Am Coll Cardiol 62:1990–1997. https://doi.org/10.1016/j.jacc.2013.05.074

    Article  PubMed  Google Scholar 

  4. Kuhne M, Krisai P, Coslovsky M, Rodondi N, Muller A, Beer JH, Ammann P, Auricchio A, Moschovitis G, Hayoz D, Kobza R, Shah D, Stephan FP, Schlapfer J, Di Valentino M, Aeschbacher S, Ehret G, Eken C, Monsch A, Roten L, Schwenkglenks M, Springer A, Sticherling C, Reichlin T, Zuern CS, Meyre PB, Blum S, Sinnecker T, Wurfel J, Bonati LH, Conen D, Osswald S, Swiss AFI (2022) Silent brain infarcts impact on cognitive function in atrial fibrillation. Eur Heart J 43:2127–2135. https://doi.org/10.1093/eurheartj/ehac020

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lyaker MR, Tulman DB, Dimitrova GT, Pin RH, Papadimos TJ (2013) Arterial embolism. Int J Crit Illn Inj Sci 3:77–87. https://doi.org/10.4103/2229-5151.109429

    Article  PubMed  PubMed Central  Google Scholar 

  6. Narula J, Ibáñez B, Fuster V (2019) From heart to head, thrombi to emboli, and inferences to extrapolation. J Am Coll Cardiol 73:1000–1003. https://doi.org/10.1016/j.jacc.2019.01.025

    Article  PubMed  Google Scholar 

  7. Amarenco P, Cohen A, Tzourio C, Bertrand B, Hommel M, Besson G, Chauvel C, Touboul PJ, Bousser MG (1994) Atherosclerotic disease of the aortic arch and the risk of ischemic stroke. N Engl J Med 331:1474–1479. https://doi.org/10.1056/nejm199412013312202

    Article  CAS  PubMed  Google Scholar 

  8. Komatsu S, Ohara T, Takahashi S, Takewa M, Minamiguchi H, Imai A, Kobayashi Y, Iwa N, Yutani C, Hirayama A, Kodama K (2015) Early detection of vulnerable atherosclerotic plaque for risk reduction of acute aortic rupture and thromboemboli and atheroemboli using non-obstructive angioscopy. Circ J 79:742–750. https://doi.org/10.1253/circj.CJ-15-0126

    Article  PubMed  Google Scholar 

  9. Aono J, Ikeda S, Katsumata Y, Higashi H, Ohshima K, Ishibashi K, Matsuoka H, Watanabe K, Hamada M (2015) Correlation between plaque vulnerability of aorta and coronary artery: an evaluation of plaque activity by direct visualization with angioscopy. Int J Cardiovasc Imaging 31:1107–1114. https://doi.org/10.1007/s10554-015-0669-z

    Article  PubMed  PubMed Central  Google Scholar 

  10. Komatsu S, Yutani C, Ohara T, Takahashi S, Takewa M, Hirayama A, Kodama K (2018) Angioscopic evaluation of spontaneously ruptured aortic plaques. J Am Coll Cardiol 71:2893–2902. https://doi.org/10.1016/j.jacc.2018.03.539

    Article  PubMed  Google Scholar 

  11. Kojima K, Kimura S, Hayasaka K, Mizusawa M, Misawa T, Yamakami Y, Sagawa Y, Ohtani H, Hishikari K, Sugiyama T, Hikita H, Takahashi A (2019) Aortic plaque distribution, and association between aortic plaque and atherosclerotic risk factors: an aortic angioscopy study. J Atheroscler Thromb 26:997–1006. https://doi.org/10.5551/jat.48181

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nishi H, Higuchi Y, Takahashi T, Domae K, Inoguchi K, Kawasumi R, Hamanaka Y, Komatsu S, Hirayama A, Kodama K (2020) Aortic angioscopy assisted thoracic endovascular repair for chronic type B aortic dissection. J Cardiol 76:60–65. https://doi.org/10.1016/j.jjcc.2020.02.011

    Article  PubMed  Google Scholar 

  13. Kojima K, Komatsu S, Kakuta T, Fukamachi D, Kimura S, Fujii H, Matsuura M, Dai K, Matsuoka H, Higuchi Y, Ueda Y, Asakura M, Yutani C, Okumura Y, Eikelboom JW, Hirayama A, Kodama K, group E-Ns (2022) Aortic plaque burden predicts vascular events in patients with cardiovascular disease: the EAST-NOGA study. J Cardiol 79:144–152. https://doi.org/10.1016/j.jjcc.2021.08.028

    Article  PubMed  Google Scholar 

  14. Higuchi Y, Hirayama A, Hamanaka Y, Kobayashi T, Sotomi Y, Komatsu S, Yutani C, Kodama K (2022) Significant contribution of aortogenic mechanism in ischemic stroke: observation of aortic plaque rupture by angioscopy. JACC Asia 2:750–759. https://doi.org/10.1016/j.jacasi.2022.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  15. Komatsu S, Takahashi S, Yutani C, Ohara T, Takewa M, Hirayama A, Kodama K (2020) Spontaneous ruptured aortic plaque and injuries: insights for aging and acute aortic syndrome from non-obstructive general angioscopy. J Cardiol 75:344–351. https://doi.org/10.1016/j.jjcc.2019.12.004

    Article  PubMed  Google Scholar 

  16. Takahashi K, Iijima K, Nagasaki M, Torii I, Yamaguchi S, Kobayashi S (2004) Deterioration of vascular dementia caused by recurrent multiple small emboli from thoracic aortic atheroma. Intern Med 43:607–611. https://doi.org/10.2169/internalmedicine.43.607

    Article  PubMed  Google Scholar 

  17. Komatsu S, Ohara T, Takahashi S, Takewa M, Yutani C, Kodama K (2017) Improving the visual field in coronary artery by with non-obstructive angioscopy: dual infusion method. Int J Cardiovasc Imaging 33:789–796. https://doi.org/10.1007/s10554-017-1079-1

    Article  PubMed  Google Scholar 

  18. Hiro T, Komatsu S, Fujii H, Takayama T, Ueda Y, Higuchi Y, Abe S, Kimura S, Kakuta T, Sato A (2018) Consensus standards for acquisition, measurement, and reporting of non-obstructive aortic angioscopy studies: a report from the Working Group of Japan Vascular Imaging Research Organization for standardization of non-obstructive aortic angioscopy (Version 2017). Angioscopy (web) 4:1–11. https://doi.org/10.15791/angioscopy.re.17.0018

    Article  Google Scholar 

  19. Kojima K, Hiro T, Koyama Y, Ohgaku A, Fujito H, Ebuchi Y, Arai R, Monden M, Migita S, Morikawa T, Tamaki T, Murata N, Akutsu N, Nishida T, Kitano D, Sudo M, Fukamachi D, Yoda S, Takayama T, Hirayama A, Okumura Y (2021) High wall shear stress is related to atherosclerotic plaque rupture in the aortic arch of patients with cardiovascular disease: a study with computational fluid dynamics model and non-obstructive general angioscopy. J Atheroscler Thromb 28:742–753. https://doi.org/10.5551/jat.56598

    Article  CAS  PubMed  Google Scholar 

  20. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ (2005) Recommendations for chamber quantification: a report from the American society of echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European association of echocardiography, a branch of the European society of cardiology. J Am Soc Echocardiogr 18:1440–1463. https://doi.org/10.1016/j.echo.2005.10.005

    Article  PubMed  Google Scholar 

  21. Corban MT, Toya T, Ahmad A, Lerman LO, Lee HC, Lerman A (2021) Atrial fibrillation and endothelial dysfunction: a potential link? Mayo Clin Proc 96:1609–1621. https://doi.org/10.1016/j.mayocp.2020.11.005

    Article  CAS  PubMed  Google Scholar 

  22. Freestone B, Chong AY, Nuttall S, Blann AD, Lip GY (2007) Soluble E-selectin, von willebrand factor, soluble thrombomodulin, and total body nitrate/nitrite product as indices of endothelial damage/dysfunction in paroxysmal, persistent, and permanent atrial fibrillation. Chest 132:1253–1258. https://doi.org/10.1378/chest.07-1185

    Article  CAS  PubMed  Google Scholar 

  23. Jen N, Yu F, Lee J, Wasmund S, Dai X, Chen C, Chawareeyawong P, Yang Y, Li R, Hamdan MH, Hsiai TK (2013) Atrial fibrillation pacing decreases intravascular shear stress in a New Zealand white rabbit model: implications in endothelial function. Biomech Model Mechanobiol 12:735–745. https://doi.org/10.1007/s10237-012-0437-0

    Article  PubMed  Google Scholar 

  24. Ueda T, Suito H, Ota H, Takase K (2018) Computational fluid dynamics modeling in aortic diseases. Cardiovasc Imaging Asia. https://doi.org/10.22468/cvia.2018.00073

    Article  Google Scholar 

  25. Spacek M, Zemanek D, Hutyra M, Sluka M, Taborsky M (2018) Vulnerable atherosclerotic plaque - a review of current concepts and advanced imaging. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 162:10–17. https://doi.org/10.5507/bp.2018.004

    Article  PubMed  Google Scholar 

  26. Suzuki M, Furuya K, Ozawa M, Miura K, Ozawa T, Matsuzono K, Mashiko T, Koide R, Fujimoto S, Tanaka R (2021) Complex aortic arch atherosclerosis in acute ischemic stroke patients with non-valvular atrial fibrillation. J Atheroscler Thromb 28:776–785. https://doi.org/10.5551/jat.58339

    Article  CAS  PubMed  Google Scholar 

  27. Kempe K, Starr B, Stafford JM, Islam A, Mooney A, Lagergren E, Corriere MA, Edwards MS (2014) Results of surgical management of acute thromboembolic lower extremity ischemia. J Vasc Surg 60:702–707. https://doi.org/10.1016/j.jvs.2014.03.273

    Article  PubMed  Google Scholar 

  28. Kulezic A, Acosta S (2022) Epidemiology and prognostic factors in acute lower limb ischaemia: a population based study. Eur J Vasc Endovasc Surg 63:296–303. https://doi.org/10.1016/j.ejvs.2021.10.044

    Article  PubMed  Google Scholar 

  29. Kuronuma K, Okumura Y, Yokoyama K, Matsumoto N, Tachibana E, Oiwa K, Matsumoto M, Kojima T, Haruta H, Nomoto K, Sonoda K, Arima K, Kogawa R, Takahashi F, Kotani T, Okubo K, Fukushima S, Itou S, Kondo K, Chiku M, Ohno Y, Onikura M, Hirayama A (2019) Worsening renal function, adverse clinical events and major determinants for changes of renal function in patients with atrial fibrillation: a Japanese multicenter registry substudy. Curr Med Res Opin 35:2007–2013. https://doi.org/10.1080/03007995.2019.1631597

    Article  CAS  PubMed  Google Scholar 

  30. Campos CM, van Klaveren D, Iqbal J, Onuma Y, Zhang YJ, Garcia-Garcia HM, Morel MA, Farooq V, Shiomi H, Furukawa Y, Nakagawa Y, Kadota K, Lemos PA, Kimura T, Steyerberg EW, Serruys PW (2014) Predictive performance of SYNTAX score II in patients with left main and multivessel coronary artery disease-analysis of CREDO-Kyoto registry. Circ J 78:1942–1949. https://doi.org/10.1253/circj.cj-14-0204

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI Grant Number 21K16041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Kojima.

Ethics declarations

Conflict of interest

The following authors have potential conflicts of interest: Dr. Okumura has received research funding from Bayer Healthcare, Daiichi-Sankyo, Bristol-Meyers Squibb, Nippon Boehringer Ingelheim, Pfizer, and Boston Scientific Japan and has accepted remuneration from Bayer Healthcare, Daiichi-Sankyo, and Bristol-Meyers Squibb. The other authors have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 36688 kb)

Supplementary file2 (AVI 36688 kb)

Supplementary file3 (DOCX 41 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizobuchi, S., Kojima, K., Miyagawa, M. et al. Association between aortic thrombi detected using non-obstructive general angioscopy and atrial fibrillation. J Thromb Thrombolysis 57, 269–277 (2024). https://doi.org/10.1007/s11239-023-02917-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-023-02917-4

Keywords

Navigation