Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 1, 2023

Single-step synthesis of ZnO nanoparticles using a phytosynthesis route and its characterization

  • Ankita Nandi , Himanshu Sachin Giram , Vishnu Pratap Patel , Ritam Mehera , Satadruta Das , Deokrishna Kumar Choudhary , Abdur Rahman , Dipanjan Saha , Paramesh Chandra , Man Singh , Naznin Ara Begum , Swapan Kumar Mandal , Chandan Kumar Jana and Nilanjana Das EMAIL logo

Abstract

Green synthesis of nanoparticles (NPs) is superior to conventional physical and chemical methods and increasingly becoming the preferred mode of synthesis nowadays. We report a method for phytosynthesis of ZnO NPs and their characterization for plausible diverse applications. ZnO NPs was synthesized using an extract of the leaves of Tagetes erecta L. (marigold), with optimum synthesis at a ratio of 1:150 for the leaf extract and salt solution (v/v), 150 mM zinc acetate at 85 °C and pH 6. The NPs were characterized using UV–vis spectrophotometer, FESEM, EDX, FT-IR, XRD, AFM, XPS, and ζ potential techniques. The band gap energy of the NPs was 3.44 eV. The IR spectrum confirmed the involvement of different phenolic and aromatic components of the plant extract as capping agents. The mean size of the NPs was ∼25 nm, using XRD and AFM techniques. The SEM image showed that the NPs were elongate with a rough surface. The EDX profile confirmed the purity of the preparation. UV–vis spectrophotometry and ζ potential data showed the NPs to be stable. SDS-PAGE of Saccharomyces cerevisiae cells exposed to 200 and 400 μg/mL NPs showed that expression levels of a few proteins were affected. The effect of the NPs on some microbes analyzed using agar well diffusion assay showed its antimicrobial potency indicating its potential use as an antimicrobial agent, especially against Gram-positive bacteria.


Corresponding author: Nilanjana Das, Department of Biotechnology, Visva-Bharati University, Santiniketan, West Bengal 731 235, India, E-mail:

Ankita Nandi, Himanshu Sachin Giram, and Vishnu Pratap Patel contributed equally. Presently at: Himanshu Sachin Giram, Joshi layout, Pandharkawada, Dist: Yavatmal, Maharashtra 445302, India; Presently at: Vishnu Pratap Patel, Department of Quality Control, Mylan Laboratory, Indore, Madhya Pradesh 453001, India; Presently at: Satadruta Das, Kazidanga More, Bandel, P.O. Devanandapur, Dist – Hooghly, West Bengal – 712123, India; Presently at: Deokrishna Kumar Choudhary, Mahavir Cancer Sansthan and Research Centre, Patna – 801505, India; Presently at: Abdur Rahman, Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India; Presently at: Dipanjan Saha, Narikela, P.O. Gaighata, Dist. North 24 Parganas, West Bengal 743249, India.


Funding source: DBT-MHRD

Funding source: University Grants Commission

Acknowledgment

The authors thank the Department of Chemistry, Visva-Bharati; Central Instrument Facilities of MNIT, and IICB, Kolkata for analyses.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Ankita Nandi: mentored the work and wrote an initial version of the manuscript; Himanshu Sachin Giram: performed the laboratory experiments; Vishnu Pratap Patel: performed the laboratory experiments; Ritam Mehera: performed laboratory experiments and helped in preparation of the figures, Satadruta Das: performed the laboratory experiments; Deokrishna Kumar Choudhary: performed the laboratory experiments; Abdur Rahman: performed the laboratory experiments; Dipanjan Saha: performed the laboratory experiments; Paramesh Chandra: data analysis; Man Singh: editing of the manuscript; Naznin Ara Begum: designing of the experiments; Swapan Kumar Mandal: data analysis; Chandan Kumar Jana: designing the experiments, data analysis; editing the manuscript; Nilanjana Das: designing the experiments, data analysis and writing and editing the manuscript.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: HSG, VPP, SD, AR and DS thank DBT-HRD scheme for funds. AN thanks UGC for non-NET fellowship, RM thanks UGC for JRF.

  5. Data availability: The raw data can be available from the first author (Dr. Ankita Nandi) on reasonable request.

References

[1] M. J. Winans and J. E. G. Gallager, “Metallomic and lipidomic analysis of S. cerevisiae response to cellulosic copper nanoparticles uncovers drivers of toxicity,” Metallomics, vol. 12, p. 799, 2020. https://doi.org/10.1039/d0mt00018c.Search in Google Scholar PubMed

[2] A. Moezzi, A. M. McDonagh, and M. B. Cortie, “Zinc oxide particles: synthesis, properties and applications,” Chem. Eng. J., vols. 185–186, p. 1, 2012. https://doi.org/10.1016/j.cej.2012.01.076.Search in Google Scholar

[3] V. V. Gawade, S. R. Sabale, R. S. Dhabbe, R. S. Dhabbe, S. V. Kate, and K. M. Garadkar, “Bio-mediated synthesis of ZnO nanostructures for efficient photodegradation of methyl orange and methylene blue,” J. Mater. Sci. Mater. Electron., vol. 32, pp. 28573–28586, 2021. https://doi.org/10.1007/s10854-021-07235-0.Search in Google Scholar

[4] A. Bhosale, A. Gophane, J. Kadam, S. Sabale, K. Sonawane, and K. Garadkar, “Fabrication of visible-active ZnO-gC3N4 nanocomposites for photodegradation and cytotoxicity of methyl orange and antibacterial activity towards drug resistance pathogens,” Opt. Mater., vol. 136, p. 113392, 2023. https://doi.org/10.1016/j.optmat.2022.113392.Search in Google Scholar

[5] V. V. Gawade, S. R. Sabale, R. S. Dhabbe, and K. M. Garadkar, “Environmentally sustainable synthesis of SnO2 nanostructures for efficient photodegradation of industrial dyes,” J. Mater. Sci. Mater. Electron., vol. 34, p. 138, 2023. https://doi.org/10.1007/s10854-022-09455-4.Search in Google Scholar

[6] A. Sirelkhatim, S. Mahmud, A. Seeni, et al.., “Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism,” Nano-Micro Lett., vol. 7, pp. 219–242, 2015. https://doi.org/10.1007/s40820-015-0040-x.Search in Google Scholar PubMed PubMed Central

[7] M. Naseer, U. Aslam, B. Khalid, and B. Chen, “Green route to synthesize zinc oxide nanoparticles using leaf extracts of cassia fistula and melia azadarach and their antibacterial potential,” Sci. Rep., vol. 10, p. 9055, 2020. https://doi.org/10.1038/s41598-020-65949-3.Search in Google Scholar PubMed PubMed Central

[8] E. Zare, S. Pourseyedi, M. Khatami, and E. Darezereshki, “Simple biosynthesis of zinc oxide nanoparticles using nature’s source, and it’s in vitro bio-activity,” J. Mol. Struct., vol. 1146, p. 96, 2017. https://doi.org/10.1016/j.molstruc.2017.05.118.Search in Google Scholar

[9] P. Sutradhar and M. Saha, “Green synthesis of zinc oxide nanoparticles using tomato (Lycopersicon esculentum) extract and its photovoltaic application,” J. Exp. Nanosci., vol. 11, p. 314, 2016. https://doi.org/10.1080/17458080.2015.1059504.Search in Google Scholar

[10] M. Aminuzzaman, L. P. Ying, W. S. Goh, and A. Watanabe, “Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity,” Bull. Mater. Sci., vol. 41, p. 50, 2018. https://doi.org/10.1007/s12034-018-1568-4.Search in Google Scholar

[11] H. S. Lalithamba, M. Raghavendra, K. Uma, K. V. Yatish, M. Das, and N. Govindappa, “Capsicum annuum fruit extract: a novel reducing agent for the green synthesis of ZnO nanoparticles and their multifunctional applications,” Acta Chim. Slov., vol. 65, p. 354, 2018. https://doi.org/10.17344/acsi.2017.4034.Search in Google Scholar PubMed

[12] S. Hashemi, Z. Asrar, S. Pourseyedi, and N. Nadernejad, “Green synthesis of ZnO nanoparticles by Olive (Olea europaea),” IET Nanobiotechnol., vol. 10, p. 400, 2016. https://doi.org/10.1049/iet-nbt.2015.0117.Search in Google Scholar PubMed PubMed Central

[13] N. Matinise, X. G. Fuku, K. Kaviyarasu, N. Mayedwa, and M. Maaza, “ZnO nanoparticles via Moringa oleifera green synthesis: physical properties & mechanism of formation,” Appl. Surf. Sci., vol. 406, p. 339, 2017. https://doi.org/10.1016/j.apsusc.2017.01.219.Search in Google Scholar

[14] N. Senthilkumar, E. Nandhakumar, P. Priya, D. Soni, M. Vimalane, and I. V. Potheher, “Synthesis of ZnO nanoparticles using leaf extract of Tectona grandis (L.) and their anti-bacterial, anti-arthritic, anti-oxidant and in vitro cytotoxicity activities,” New J. Chem., vol. 41, p. 10347, 2017. https://doi.org/10.1039/c7nj02664a.Search in Google Scholar

[15] H. Umar, D. Kavaz, and N. Rizaner, “Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines,” Int. J. Nanomed., vol. 14, p. 87, 2019. https://doi.org/10.2147/ijn.s186888.Search in Google Scholar

[16] J. Suresh, G. Pradheesh, V. Alexramani, M. Sundrarajan, and S. I. Hong, “Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 9, p. 015008, 2018. https://doi.org/10.1088/2043-6254/aaa6f1.Search in Google Scholar

[17] P. Jamdagni, P. Khatri, J. S. Rana, and J. K. Saud, “Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity,” Univ. Sci., vol. 30, p. 168, 2016. https://doi.org/10.1016/j.jksus.2016.10.002.Search in Google Scholar

[18] J. Santhoshkumar, S. V. Kumar, and S. Rajeshkumar, “Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen,” Resour. Effic. Technol., vol. 3, p. 459, 2017. https://doi.org/10.1016/j.reffit.2017.05.001.Search in Google Scholar

[19] G. Sharmila, C. Muthukumaran, K. Sandiya, et al.., “Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract,” J. Nanostruct. Chem., vol. 8, p. 293, 2018. https://doi.org/10.1007/s40097-018-0271-8.Search in Google Scholar

[20] S. Gowsami and R. P. Singh, “Quantitative Estimation of Phytoconstituents and in vitro Anthelmintic Assessment of leaf Extracts of Tagetes erecta Linn,” Res. J. Pharm. Technol., vol. 11, p. 2058, 2018.10.5958/0974-360X.2018.00382.7Search in Google Scholar

[21] D. B. Rodrigues, A. Z. Mercadante, and L. R. B. Mariutti, “Marigold carotenoids: much more than lutein esters,” Food Res. Int., vol. 119, p. 653, 2018. https://doi.org/10.1016/j.foodres.2018.10.043.Search in Google Scholar PubMed

[22] P. K. Tyagi, S. Tyagi, D. Gola, et al., “Ascorbic Acid and Polyphenols Mediated Green Synthesis of Silver Nanoparticles from Tagetes erecta L. Aqueous Leaf Extract and Studied Their Antioxidant Properties,” J. Nanomater., vol. 6515419, pp. 1–9, 2021.10.1155/2021/6515419Search in Google Scholar

[23] D. Barhoi, P. Upadhaya, S. N. Barbhuiya, A. Giri, and S. Giri, “Extracts of Tagetes erecta exhibit potential cytotoxic and antitumor activity that could be employed as a promising therapeutic agent against cancer: A study involving in vitro and in vivo approach,” Phytomed. Plus, vol. 2, pp. 1–16, 2022.10.1016/j.phyplu.2021.100187Search in Google Scholar

[24] E. Gansukh, K. K. Mya, M. Jung, Y. S. Keum, D. H. Kim, and R. K. Saini, “Lutein derived from marigold (Tagetes erecta) petals triggers ROS generation and activates Bax and caspase-3 mediated apoptosis of human cervical carcinoma (HeLa) cells,” Food Chem. Toxicol., vol. 127, p. 11, 2019. https://doi.org/10.1016/j.fct.2019.02.037.Search in Google Scholar PubMed

[25] O. Kaisoon, S. Siriamornpun, N. Weerapreeyakul, and N. Meeso, “Phenolic compounds and antioxidant activities of edible flowers from Thailand,” J. Funct. Foods, vol. 3, p. 88, 2011. https://doi.org/10.1016/j.jff.2011.03.002.Search in Google Scholar

[26] P. S. Ruddock, M. Charland, S. Ramirez, et al.., “Antimicrobial activity of flavonoids from piper lanceaefolium and other Colombian medicinal plants against antibiotic susceptible and resistant strains of Neisseria gonorrhoeae,” Sex. Transm. Dis., vol. 38, p. 82, 2011. https://doi.org/10.1097/olq.0b013e3181f0bdbd.Search in Google Scholar

[27] L. J. Shetty, H. Harikiran, and J. Fernandes, “Pharmacological evaluation of ethanolic extract of flowers of Tagetes erecta on epilepsy,” J. Pharm. Res., vol. 2, p. 1035, 2009.Search in Google Scholar

[28] R. Rodda, A. Kota, K. Sreeja, C. H. Raju, and N. Valya, “Antidiabetic potential of Tagetes erecta whole plant in streptozotocin induced diabetic rats,” J. Pharm. Res., vol. 4, p. 4032, 2011.Search in Google Scholar

[29] M. Kiranmai, S. M. Kazim, and M. Ibrahim, “Combined wound healing activity of Gymnema sylvestere and Tagetes erecta Linn,” Int. J. Pharm. Appl., vol. 2, p. 135, 2011.Search in Google Scholar

[30] J. Palacio-Landín, P. M. Gives, D. O. Salinas-Sánchez, et al.., “In vitro and in vivo nematocidal activity of allium sativum and Tagetes erecta extracts against Haemonchus contortus,” Turk. Parazitoloji Derg., vol. 39, p. 260, 2015. https://doi.org/10.5152/tpd.2015.4523.Search in Google Scholar PubMed

[31] F. Granado, B. Olmedilla, and I. Blanco, “Nutritional and clinical relevance of lutein in human health,” Brit. J. Nutr., vol. 90, p. 487, 2003. https://doi.org/10.1079/bjn2003927.Search in Google Scholar PubMed

[32] T. T. J. M. Berendschot, R. A. Goldbohm, W. A. Klöpping, J. Van de Kraats, J. van Norel, and D. van Norren, “Influence of lutein supplementation on macular pigment, assessed with two objective techniques,” Invest. Ophthalmol. Vis. Sci., vol. 41, p. 3322, 2000.Search in Google Scholar

[33] C. Moliner, L. Barros, M. I. Dias, et al.., “Edible flowers of Tagetes erecta L. as functional ingredients: phenolic composition, antioxidant and protective effects on Caenorhabditis elegans,” Nutrients, vol. 10, p. 2002, 2018. https://doi.org/10.3390/nu10122002.Search in Google Scholar PubMed PubMed Central

[34] J. H. Jorgensen and J. D. Turnidge, “Susceptibility test methods: dilution and disk diffusion methods,” in Manual of Clinical Microbiology, 9th ed., P. R. Murray, E. J. Baron, J. H. Jorgensen, M. L. Landry, and M. A. Pfaller, Eds., Washington, DC, ASM Press, 2007, p. 11521.Search in Google Scholar

[35] M. Mukherjee, A. Nandi, K. Chandra, S. K. Saikia, C. K. Jana, and N. Das, “Protein extraction from Saccharomyces cerevisiae at different growth phases,” J. Microbiol. Methods, vol. 172, p. 105906, 2020. https://doi.org/10.1016/j.mimet.2020.105906.Search in Google Scholar PubMed

[36] L. Alexander and H. P. Klug, “Determination of crystallite size with the X-ray spectrometer,” J. Appl. Phys., vol. 21, p. 137, 1950. https://doi.org/10.1063/1.1699612.Search in Google Scholar

[37] F. Hai-Bo, Y. Shao-Yan, Z. Pan-Feng, et al.., “Investigation of oxygen vacancy and interstitial oxygen defects in ZnO films by photoluminescence and X-ray photoelectron spectroscopy,” Chin. Phys. Lett., vol. 24, p. 2108, 2007. https://doi.org/10.1088/0256-307x/24/7/089.Search in Google Scholar

[38] P. P. Gan and S. F. Li, “Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications,” Rev. Environ. Sci. Biotechnol., vol. 11, p. 169, 2012. https://doi.org/10.1007/s11157-012-9278-7.Search in Google Scholar

[39] N. Bala, S. Saha, M. Chakraborty, et al.., “Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity,” RSC Adv., vol. 5, p. 4993, 2015. https://doi.org/10.1039/c4ra12784f.Search in Google Scholar

[40] O. Kahraman, R. Binzet, E. Turunc, A. Dogen, and H. Arslan, “Synthesis, characterization, antimicrobial and electrochemical activities of zinc oxide nanoparticles obtained from Sarcopoterium spinosum (L) Spach leaf extract,” Mater. Res. Express, vol. 5, p. 1, 2018.10.1088/2053-1591/aad953Search in Google Scholar

[41] S. H. Ribut, C. A. C. Abdullah, M. Mustafa, M. Z. M. Yusoff, and S. N. A. Azman, “Influence of pH variations on zinc oxide nanoparticles and their antibacterial activity,” Mater. Res. Express, vol. 6, p. 025016, 2019. https://doi.org/10.1088/2053-1591/aaecbc.Search in Google Scholar

[42] A. Jamal, R. Awad, and H. Yusef, “Evaluation of antimicrobial activity of ZnO nanoparticles against foodborne pathogens,” Int. J. Curr. Microbiol. Appl. Sci., vol. 8, p. 2000, 2019. https://doi.org/10.20546/ijcmas.2019.811.234.Search in Google Scholar

[43] V. V. Makarov, A. J. Love, O. V. Sinitsyna, et al.., ““Green” nanotechnologies: synthesis of metal nanoparticles using plants,” Acta Naturae, vol. 6, p. 35, 2014. https://doi.org/10.32607/20758251-2014-6-1-35-44.Search in Google Scholar

[44] V. Armendariz, I. Herrera, J. R. Peralta-Videa, et al.., “Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology,” J. Nanopart. Res., vol. 6, p. 377, 2004. https://doi.org/10.1007/s11051-004-0741-4.Search in Google Scholar

[45] U. Manzoor, F. T. Zaha, S. Rafique, M. T. Moin, and M. Mujahid, “Effect of synthesis temperature, nucleation time, and postsynthesis heat treatment of ZnONPs and its sensing properties,” J. Nanomater., vol. 2015, p. 189058, 2015.10.1155/2015/189058Search in Google Scholar

[46] S. Jain and M. S. Mehata, “Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property,” Sci. Rep., vol. 7, p. 15867, 2017. https://doi.org/10.1038/s41598-017-15724-8.Search in Google Scholar PubMed PubMed Central

[47] H. Yu and Y. Dong, “Investigation of ZnO nanostructures synthesized from different zinc salts,” ChemXpress, vol. 9, p. 91, 2016.Search in Google Scholar

[48] S. Fakhari, M. Jamzad, and H. K. Fard, “Green synthesis of zinc oxide nanoparticles: a comparison,” Green Chem. Lett. Rev., vol. 12, p. 19, 2019. https://doi.org/10.1080/17518253.2018.1547925.Search in Google Scholar

[49] P. M. Perillo, M. N. Atia, and D. F. Rodríguez, “Studies on the growth control of ZnO nanostructures synthesized by the chemical method,” Revista Matér., vol. 23, p. 1, 2018. https://doi.org/10.1590/s1517-707620180002.0467.Search in Google Scholar

[50] U. Manzoor, S. Siddique, R. Ahmed, Z. Noreen, H. Bokhari, and I. Ahmad, “Antibacterial, structural and optical characterization of mechano-chemically prepared ZnO nanoparticles,” PLoS One, vol. 11, p. e0154704, 2016. https://doi.org/10.1371/journal.pone.0154704.Search in Google Scholar PubMed PubMed Central

[51] N. M. Franklin, N. J. Rogers, S. C. Apte, G. E. Batley, G. E. Gadd, and P. S. Casey, “Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (pseudokirchneriella subcapitata): the importance of particle solubility,” Environ. Sci. Technol., vol. 41, p. 8484, 2007. https://doi.org/10.1021/es071445r.Search in Google Scholar PubMed

[52] M. Heinlaan, A. Ivask, I. Blinova, H. C. Dubourguier, and A. Kahru, “Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus,” Chemosphere, vol. 71, p. 1308, 2008. https://doi.org/10.1016/j.chemosphere.2007.11.047.Search in Google Scholar PubMed

[53] O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, and R. Azimiral, “Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria,” J. Phys. D Appl. Phys., vol. 42, p. 225305, 2009. https://doi.org/10.1088/0022-3727/42/22/225305.Search in Google Scholar

[54] H. Yang, C. Liu, D. Yang, H. Zhang, and Z. Xi, “Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition,” J. Appl. Toxicol., vol. 29, p. 69, 2009. https://doi.org/10.1002/jat.1385.Search in Google Scholar PubMed

[55] T. Xu and C. S. Xie, “Tetrapod-like nano-particle ZnO/acrylic resin composite and its multi-function property,” Prog. Org. Coat., vol. 46, p. 297, 2003. https://doi.org/10.1016/s0300-9440(03)00016-x.Search in Google Scholar

[56] L. L. Zhang, Y. H. Jiang, Y. L. Ding, M. Povey, and D. York, “Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids),” J. Nanopart., vol. 9, p. 479, 2007. https://doi.org/10.1007/s11051-006-9150-1.Search in Google Scholar

[57] B. A. Abbasi, J. Iqbal, R. Ahmad, et al.., “Bioactivities of Geranium wallichianum leaf extracts conjugated with zinc oxide nanoparticles,” Biomolecules, vol. 10, p. 38, 2020. https://doi.org/10.3390/biom10010038.Search in Google Scholar PubMed PubMed Central

[58] K. R. Raghupathi, R. T. Koodali, and A. C. Manna, “Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles,” Langmuir, vol. 27, p. 4020, 2011. https://doi.org/10.1021/la104825u.Search in Google Scholar PubMed

[59] X.-Q. Zhou, Z. Hayat, D.-D. Zhang, et al.., “Zinc oxide nanoparticles: synthesis, characterization, modification, and applications in food and agriculture,” Processes, vol. 11, p. 1193, 2023. https://doi.org/10.3390/pr11041193.Search in Google Scholar

[60] O. Yamamoto, “Influence of particle size on the antibacterial activity of zinc oxide,” Int. J. Inorg. Mater., vol. 3, p. 643, 2001. https://doi.org/10.1016/s1466-6049(01)00197-0.Search in Google Scholar

[61] X. Li, Y. Xing, Y. Jiang, Y. Ding, and W. Li, “Antimicrobial activities of ZnO powder-coated PVC film to inactivate food pathogens,” Int. J. Food Sci. Technol., vol. 44, p. 2161, 2009. https://doi.org/10.1111/j.1365-2621.2009.02055.x.Search in Google Scholar

[62] D. Botstein, S. A. Chervitz, and J. M. Cherry, “Yeast as a model organism,” Science, vol. 277, p. 1259, 1997. https://doi.org/10.1126/science.277.5330.1259.Search in Google Scholar PubMed PubMed Central

[63] V. D. Longo, L. M. Ellerby, D. E. Bredesen, J. S. Valentine, and E. B. Gralla, “Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast,” J. Cell Biol., vol. 137, p. 1581, 1997. https://doi.org/10.1083/jcb.137.7.1581.Search in Google Scholar PubMed PubMed Central

[64] P. K. Babele, “Zinc oxide nanoparticles impose metabolic toxicity by de-regulating proteome and metabolome in Saccharomyces cerevisiae,” Toxicol Rep., vol. 6, p. 64, 2019.10.1016/j.toxrep.2018.12.001Search in Google Scholar PubMed PubMed Central

[65] E. R. Carmona, C. Inostroza-Blancheteau, L. Rubio, and R. Marcos, “Genotoxic and oxidative stress potential of nanosized and bulk zinc oxide particles in Drosophila melanogaster,” Toxicol. Ind. Health, vol. 32, p. 1987, 2016. https://doi.org/10.1177/0748233715599472.Search in Google Scholar PubMed

[66] L. Lin, M. Xu, H. Mu, et al.., “Quantitative proteomic analysis to understand the mechanisms of zinc oxide nanoparticle toxicity to Daphnia pulex (Crustacea: daphniidae): comparing with bulk zinc oxide and zinc salt,” Environ. Sci. Technol., vol. 53, p. 5436, 2019. https://doi.org/10.1021/acs.est.9b00251.Search in Google Scholar PubMed

[67] A. K. Srivastava, S. S. Yadav, S. Mishra, S. K. Yadav, D. Parmar, and S. Yadav, “A combined microRNA and proteome profiling to investigate the effect of ZnO nanoparticles on neuronal cells,” Nanotoxicol, vol. 14, p. 757, 2020. https://doi.org/10.1080/17435390.2020.1759726.Search in Google Scholar PubMed

[68] K. Yadav, S. A. Ali, A. K. Mohanty, E. Muthusamy, K. Subaharan, and G. Kaul, “MSN, MWCNT and ZnO nanoparticle-induced CHO-K1 cell polarisation is linked to cytoskeleton ablation,” J. Nanobiotechnol., vol. 19, p. 45, 2021. https://doi.org/10.1186/s12951-021-00779-7.Search in Google Scholar PubMed PubMed Central

Received: 2023-04-16
Accepted: 2023-10-27
Published Online: 2023-12-01
Published in Print: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.5.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2023-0255/html
Scroll to top button