Skip to main content

Advertisement

Log in

HPV16 E6/E7-mediated regulation of PiwiL1 expression induces tumorigenesis in cervical cancer cells

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

PiwiL1 has been reported to be over-expressed in many cancers. However, the molecular mechanism by which these proteins contribute to tumorigenesis and their regulation in cancer cells is still unclear. We intend to understand the role of PiwiL1 in tumorigenesis and also its regulation in cervical cells.

Methods

We studied the effect of loss of PiwiL1 function on tumor properties of cervical cancer cells in vitro and in vivo. Also we have looked into the effect of PiwiL1 overexpression in the malignant transformation of normal cells both in vitro and in vivo. Further RNA-seq and RIP-seq analyses were done to get insight of the direct and indirect targets of PiwiL1 in the cervical cancer cells.

Results

Here, we report that PiwiL1 is not only over-expressed, but also play a major role in tumor induction and progression. Abolition of PiwiL1 in CaSki cells led to a decrease in the tumor-associated properties, whereas, its upregulation conferred malignant transformation of normal HaCaT cells. Our study delineates a new link between HPV oncogenes, E6 and E7 with PiwiL1. p53 and E2F1 directly bind and differentially regulate PiwiL1 promoter in a context-dependant manner. Further, RNA-seq together with RIP-RNA-seq suggested a strong and direct role for PiwiL1 in promoting metastasis in cervical cancer cells.

Conclusion

Our study demonstrates that PiwiL1 act as an oncogene in cervical cancer by inducing tumor-associated properties and EMT pathway. The finding that HPV oncogenes, E6/E7 can positively regulate PiwiL1 suggests a possible mechanism behind HPV-mediated tumorigenesis in cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. R. Suzuki, S. Honda, Y. Kirino, Front. Genet. 3, 204 (2012). https://doi.org/10.3389/fgene.2012.00204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Y. Liu, M. Dou, X. Song, Y. Dong, S. Liu, H. Liu, J. Tao, W. Li, X. Yin, W. Xu, Mol. Cancer 18, 123 (2019). https://doi.org/10.1186/s12943-019-1052-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Y.W. Iwasaki, S. Sriswasdi, Y. Kinugasa, J. Adachi, Y. Horikoshi, A. Shibuya, W. Iwasaki, S. Tashiro, T. Tomonaga, H. Siomi, EMBO J. 40, e108345 (2021). https://doi.org/10.15252/embj.2021108345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A.K. Sharma, M.C. Nelson, J.E. Brandt, M. Wessman, N. Mahmud, K.P. Weller, R. Hoffman, Blood 97, 426–434 (2001). https://doi.org/10.1182/blood.v97.2.426

    Article  CAS  PubMed  Google Scholar 

  5. W. Deng, H. Lin, Dev. Cell 2, 819–830 (2002). https://doi.org/10.1016/s1534-5807(02)00165-x

    Article  CAS  PubMed  Google Scholar 

  6. A. Grimson, M. Srivastava, B. Fahey, B.J. Woodcroft, H.R. Chiang, N. King, B.M. Degnan, D.S. Rokhsar, D.P. Bartel, Nature 455, 1193–1197 (2008). https://doi.org/10.1038/nature07415

    Article  CAS  PubMed  Google Scholar 

  7. Y. Mei, D. Clark, L. Mao, Cancer Lett. 336, 46–52 (2013). https://doi.org/10.1016/j.canlet.2013.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. T. Sasaki, A. Shiohama, S. Minoshima, N. Shimizu, Genomics 82, 323–330 (2003). https://doi.org/10.1016/s0888-7543(03)00129-0

    Article  CAS  PubMed  Google Scholar 

  9. J.H. Lee, D. Schutte, G. Wulf, L. Fuzesi, H.J. Radzun, S. Schweyer, W. Engel, K. Nayernia, Hum. Mol. Genet. 15, 201–211 (2006). https://doi.org/10.1093/hmg/ddi430

    Article  CAS  PubMed  Google Scholar 

  10. X. Liu, Y. Sun, J. Guo, H. Ma, J. Li, B. Dong, G. Jin, J. Zhang, J. Wu, L. Meng, C. Shou, Int. J. Cancer 118, 1922–1929 (2006). https://doi.org/10.1002/ijc.21575

    Article  CAS  PubMed  Google Scholar 

  11. G. He, L. Chen, Y. Ye, Y. Xiao, K. Hua, D. Jarjoura, T. Nakano, S.H. Barsky, R. Shen, J.X. Gao, Am. J. Transl. Res. 2, 156–169 (2010)

    PubMed  PubMed Central  Google Scholar 

  12. D. Li, X. Sun, D. Yan, J. Huang, Q. Luo, H. Tang, Z. Peng, Exp. Biol. Med. (Maywood) 237, 1231–1240 (2012). https://doi.org/10.1258/ebm.2012.011380

    Article  CAS  PubMed  Google Scholar 

  13. A. Janic, L. Mendizabal, S. Llamazares, D. Rossell, C. Gonzalez, Science 330, 1824–1827 (2010). https://doi.org/10.1126/science.1195481

    Article  CAS  PubMed  Google Scholar 

  14. D. Qiao, A.M. Zeeman, W. Deng, L.H. Looijenga, H. Lin, Oncogene 21, 3988–3999 (2002). https://doi.org/10.1038/sj.onc.1205505

    Article  CAS  PubMed  Google Scholar 

  15. G. Sun, Y. Wang, L. Sun, H. Luo, N. Liu, Z. Fu, Y. You, Brain Res. 1373, 183–188 (2011). https://doi.org/10.1016/j.brainres.2010.11.097

    Article  CAS  PubMed  Google Scholar 

  16. L.F. Grochola, T. Greither, H. Taubert, P. Moller, U. Knippschild, A. Udelnow, D. Henne-Bruns, P. Wurl, Br. J. Cancer 99, 1083–1088 (2008). https://doi.org/10.1038/sj.bjc.6604653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Y. Zeng, L.K. Qu, L. Meng, C.Y. Liu, B. Dong, X.F. Xing, J. Wu, C.C. Shou, Chin. Med. J. (Engl) 124, 2144–2149 (2011)

    CAS  PubMed  Google Scholar 

  18. W. He, Z. Wang, Q. Wang, Q. Fan, C. Shou, J. Wang, K.E. Giercksky, J.M. Nesland, Z. Suo, BMC Cancer 9, 426 (2009). https://doi.org/10.1186/1471-2407-9-426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Y. Wang, Y. Liu, X. Shen, X. Zhang, X. Chen, C. Yang, H. Gao, Int. J. Clin. Exp. Pathol. 5, 315–325 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Y. Tan, L. Liu, M. Liao, C. Zhang, S. Hu, M. Zou, M. Gu, X. Li, Acta Biochim. Biophys. Sin. (Shanghai) 47, 315–324 (2015). https://doi.org/10.1093/abbs/gmv018

    Article  CAS  PubMed  Google Scholar 

  21. H. Jeong, K.H. Park, Y. Lee, A. Jeong, S. Choi, K.W. Kim, Processes 9, 1208 (2021)

    Article  CAS  Google Scholar 

  22. M. Kunnummal, M. Angelin, A.V. Das, Hum. Cell 34, 1629–1641 (2021). https://doi.org/10.1007/s13577-021-00590-4

    Article  CAS  PubMed  Google Scholar 

  23. W. Liu, Q. Gao, K. Chen, X. Xue, M. Li, Q. Chen, G. Zhu, Y. Gao, Oncol. Rep. 32, 1853–1860 (2014). https://doi.org/10.3892/or.2014.3401

    Article  CAS  PubMed  Google Scholar 

  24. C. Li, X. Zhou, J. Chen, Y. Lu, Q. Sun, D. Tao, W. Hu, X. Zheng, S. Bian, Y. Liu, Y. Ma, Oncotarget 6, 27794–27804 (2015). https://doi.org/10.18632/oncotarget.4533

    Article  PubMed  PubMed Central  Google Scholar 

  25. G. Pei, B. Li, A. Ma, Oncol. Lett. 16, 3874–3880 (2018). https://doi.org/10.3892/ol.2018.9056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. D. Feng, C. Peng, C. Li, Y. Zhou, M. Li, B. Ling, H. Wei, Z. Tian, Oncol. Rep. 22, 1129–1134 (2009). https://doi.org/10.3892/or_00000545

    Article  CAS  PubMed  Google Scholar 

  27. D. Feng, K. Yan, Y. Zhou, H. Liang, J. Liang, W. Zhao, Z. Dong, B. Ling, Oncotarget 7, 64575–64588 (2016). https://doi.org/10.18632/oncotarget.11810

    Article  PubMed  PubMed Central  Google Scholar 

  28. M. Arbyn, E. Weiderpass, L. Bruni, S. de Sanjose, M. Saraiya, J. Ferlay, F. Bray, Lancet Glob. Health 8, e191–e203 (2020). https://doi.org/10.1016/S2214-109X(19)30482-6

    Article  PubMed  Google Scholar 

  29. H.G. Ahmed, S.H. Bensumaidea, F.D. Alshammari, F.S.H. Alenazi, B.A. ALmutlaq, M.Z. Alturkstani, I.A. Aladani, Asian Pac. J. Cancer Prev. 18, 1543–1548 (2017). https://doi.org/10.22034/APJCP.2017.18.6.1543

    Article  PubMed  PubMed Central  Google Scholar 

  30. W.K. Liu, X.Y. Jiang, Z.X. Zhang, Arch. Virol. 155, 657–663 (2010). https://doi.org/10.1007/s00705-010-0635-y

    Article  CAS  PubMed  Google Scholar 

  31. S. Shi, Z.Z. Yang, S. Liu, F. Yang, H. Lin, Proc. Natl. Acad. Sci. U. S. A. 117, 22390–22401 (2020). https://doi.org/10.1073/pnas.2008724117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. S. Sreekanth, V.A. Rasheed, L. Soundararajan, J. Antony, M. Saikia, K.C. Sivakumar, A.V. Das, Mol. Neurobiol. 54, 8033–8049 (2017). https://doi.org/10.1007/s12035-016-0237-0

    Article  CAS  PubMed  Google Scholar 

  33. K.J. Livak, T.D. Schmittgen, Methods 25, 402–408 (2001). https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  34. J. Issac, P.S. Raveendran, M. Kunnummal, M. Angelin, S. Ravindran, B. Basu, A.V. Das, Biochim. Biophys. Acta Mol. Cell Res. 1870, 119510 (2023). https://doi.org/10.1016/j.bbamcr.2023.119510

    Article  CAS  PubMed  Google Scholar 

  35. L.C. Crowley, B.J. Marfell, A.P. Scott, N.J. Waterhouse, Cold Spring Harb. Protoc., 2016 (2016). https://doi.org/10.1101/pdb.prot087288

  36. K. Xie, K. Zhang, J. Kong, C. Wang, Y. Gu, C. Liang, T. Jiang, N. Qin, J. Liu, X. Guo, R. Huo, M. Liu, H. Ma, J. Dai, Z. Hu, Cancer Med. 7, 157–166 (2018). https://doi.org/10.1002/cam4.1248

    Article  CAS  PubMed  Google Scholar 

  37. Y. Hu, G.K. Smyth, J. Immunol. Methods 347, 70–78 (2009). https://doi.org/10.1016/j.jim.2009.06.008

    Article  CAS  PubMed  Google Scholar 

  38. A.V. Das, J. James, S. Bhattacharya, A.N. Imbalzano, M.L. Antony, G. Hegde, X. Zhao, K. Mallya, F. Ahmad, E. Knudsen, I. Ahmad, J. Biol. Chem. 282, 35187–35201 (2007). https://doi.org/10.1074/jbc.M706742200

    Article  CAS  PubMed  Google Scholar 

  39. A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander, J.P. Mesirov, Proc. Natl. Acad. Sci. U. S. A. 102, 15545–15550 (2005). https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. B.A. Van Tine, J.C. Kappes, N.S. Banerjee, J. Knops, L. Lai, R.D. Steenbergen, C.L. Meijer, P.J. Snijders, P. Chatis, T.R. Broker, P.T. Moen Jr., L.T. Chow, J. Virol. 78, 11172–11186 (2004). https://doi.org/10.1128/JVI.78.20.11172-11186.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. C.A. Burmeister, S.F. Khan, G. Schafer, N. Mbatani, T. Adams, J. Moodley, S. Prince, Tumour Virus Res. 13, 200238 (2022). https://doi.org/10.1016/j.tvr.2022.200238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. P. Dong, Y. Xiong, Y. Konno, K. Ihira, D. Xu, N. Kobayashi, J. Yue, H. Watari, Front. Cell Dev. Biol. 9, 656993 (2021). https://doi.org/10.3389/fcell.2021.656993

    Article  PubMed  PubMed Central  Google Scholar 

  43. K.J. Sales, Human papillomavirus and cervical cancer. In Cancer and Inflammation Mechanisms: Chemical, Biological, and Clinical Aspects. 165–180 (2014)

  44. S. Li, X. Hong, Z. Wei, M. Xie, W. Li, G. Liu, H. Guo, J. Yang, W. Wei, S. Zhang, Front. Microbiol. 10, 2483 (2019). https://doi.org/10.3389/fmicb.2019.02483

    Article  PubMed  PubMed Central  Google Scholar 

  45. E.K. Yim, J.S. Park, Cancer Res. Treat. 37, 319–324 (2005). https://doi.org/10.4143/crt.2005.37.6.319

    Article  PubMed  PubMed Central  Google Scholar 

  46. X. Wang, X. Tong, H. Gao, X. Yan, X. Xu, S. Sun, Q. Wang, J. Wang, Int. J. Oncol. 45, 2385–2392 (2014). https://doi.org/10.3892/ijo.2014.2673

    Article  CAS  PubMed  Google Scholar 

  47. H. Huang, X. Yu, X. Han, J. Hao, J. Zhao, G. Bebek, S. Bao, R.A. Prayson, A.M. Khalil, E. Jankowsky, J.S. Yu, Cell Rep. 34, 108522 (2021). https://doi.org/10.1016/j.celrep.2020.108522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. S. Siddiqi, M. Terry, I. Matushansky, PLoS One 7, e33711 (2012). https://doi.org/10.1371/journal.pone.0033711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. L. Yang, L. Bi, Q. Liu, M. Zhao, B. Cao, D. Li, J. Xiu, Dis. Markers 2015, 383056 (2015). https://doi.org/10.1155/2015/383056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Z. Chen, Q. Che, F.Z. Jiang, H.H. Wang, F.Y. Wang, Y. Liao, X.P. Wan, Biochem. Biophys. Res. Commun. 463, 876–880 (2015). https://doi.org/10.1016/j.bbrc.2015.06.028

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the University Grants Commission (UGC), Government of India, for the Senior Research Fellowship to MK and PSR. We want to thank all Neuro Stem Cell Biology Lab (RGCB) members and Jayasree R for their various technical supports. We thank Dr. Zhi-Ming Zheng for providing the pZMZ70 plasmid. We acknowledge Dr. Arumugam Rajavelu and Dr. Tessy Thomas Maliekkal for their valuable suggestions in experiment design. We thank Ms. Jayalekshmi V S and Ms. Neethu Krishnan for their help in histological work. We are extremely thankful to Dr. Sumitra Shankar for the critical reading of the manuscript. We acknowledge Clevergene Bicorp Pvt. Ltd, Bangalore for total and RIP RNA sequencing.

Funding

This work was supported by Institutional intramural funding. M.K [961/[CSIR-UGC NET DEC 2016] and P.S.R [888/[CSIR-UGC NET DEC 2018]. have received research support from UGC, Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by MK and all authors commented on previous versions of the manuscript; MK: Data curation, writing–original draft, Data visualization; PSR: assisted with the in vitro experiments; BB: Bioinformatics, Data visualization and helped in in vivo experiments; SVR: performed qRT-PCR analysis; RAP: helped in in vivo experiments; KK: histopathology data analysis and interpretation; MA: assisted with western blot; JI: assisted with immunocytochemistry; JJ: Intellectually contributed to experimental design AVD: Conceptualization, Designing experiments, Interpreted data, Critical revision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ani V. Das.

Ethics declarations

Ethics approval

All in vivo experiments followed the institutional animal ethical committee (IAEC/815/ANI/2020) guidelines.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2043 KB)

Supplementary file2 (PDF 285 KB)

Supplementary file3 (PDF 198 KB)

Supplementary file4 (PDF 10 KB)

Supplementary file5 (PDF 13 KB)

13402_2023_904_MOESM6_ESM.csv

Supplementary file6 (CSV 543 KB) Supplementary Table 5: Significant upregulated genes in PIWIL1 overexpressed HaCaT cells

13402_2023_904_MOESM7_ESM.csv

Supplementary file7 (CSV 515 KB) Supplementary Table 6: Significant downregulated genes in PIWIL1 overexpressed HaCaT cells

Supplementary file8 (CSV 55 KB) Supplementary Table 7: Gene Ontology enrichment analysis of PIWIL1 upregulated genes

Supplementary file9 (CSV 25 KB) Supplementary Table 8: Gene Ontology enrichment analysis of PIWIL1 downregulated genes

13402_2023_904_MOESM10_ESM.csv

Supplementary file10 (CSV 80 KB) Supplementary Table 9: Gene Set Enrichment Analysis between HaCaT control and HaCaT-PIWIL1 overexpressed cells

13402_2023_904_MOESM11_ESM.csv

Supplementary file11 (CSV 1 KB) Supplementary Table 10: The list of genes common in PIWIL1 RIP- Seq data and PIWIL1 positively regulated transcripts

13402_2023_904_MOESM12_ESM.csv

Supplementary file12 (CSV 4 KB) Supplementary Table 11: The list of genes common in PIWIL1 RIP- Seq data and PIWIL1 negatively regulated transcripts

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunnummal, M., Raveendran, P.S., Basu, B. et al. HPV16 E6/E7-mediated regulation of PiwiL1 expression induces tumorigenesis in cervical cancer cells. Cell Oncol. (2023). https://doi.org/10.1007/s13402-023-00904-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13402-023-00904-8

Keywords

Navigation